【題目】在平面直角坐標系中,拋物線 與軸交于點A,將點A向左平移3個單位長度,得到點B,點B在拋物線上.
(1)求點B的坐標(用含m的式子表示);
(2)求拋物線的對稱軸;
(3)已知點P(-1,-m),Q(-3,1).若拋物線與線段PQ恰有一個公共點,結(jié)合函數(shù)圖象,求m的取值范圍.
【答案】(1)B(-3,-m);(2)x=;(3)-1≤m<0
【解析】
(1)根據(jù)拋物線與y軸交于點A,將點A向左平移3個單位長度,得到點B,可以先求得點A的坐標,再根據(jù)平移的性質(zhì)得到點B的坐標;
(2)根據(jù)題目中的點A的坐標和(1)中求得的點B的坐標關(guān)于對稱軸對稱,可以求得該拋物線的對稱軸;
(3)根據(jù)題意,可以畫出相應的函數(shù)圖象,然后利用分類討論的方法即可得到m的取值范圍.
解:(1)依題意得:A(0,-m)
∴B(-3,-m)
(2)∵點A,B關(guān)于拋物線的對稱軸對稱,
∴拋物線的對稱軸為x=;
(3)當m>0時,點A(0,-m)在y軸負半軸,
此時,點P,Q位于拋物線內(nèi)部(如圖).
所以,拋物線與線段PQ無交點.
當m<0時,點A(0,-m)在y軸正半軸,
當AQ與x軸平行,即A(0,1)時(如圖2),
拋物線與線段PQ恰有一個交點Q(-3,1).
此時,m=-1.
當m>-1時(如圖3),結(jié)合圖象,拋物線與線段PQ無交點.
當-1<m<0時(如圖4),結(jié)合圖象,拋物線與線段PQ恰有一個交點.
綜上,m的取值范圍是-1≤m<0
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a,b,c為常數(shù),且a≠0)中的x與y的部分對應值如表
x | ﹣1 | 0 | 1 | 3 |
y | ﹣1 | 3 | 5 | 3 |
下列結(jié)論:
①ac<0;
②當x>1時,y的值隨x值的增大而減小.
③3是方程ax2+(b﹣1)x+c=0的一個根;
④當﹣1<x<3時,ax2+(b﹣1)x+c>0.
其中正確的結(jié)論是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,為射線上一定點,點關(guān)于射線的對稱點為點為射線上一動點,連接,滿足為鈍角,以點為中心,將線段逆時針旋轉(zhuǎn)至線段,滿足點在射線的反向延長線上.
(1)依題意補全圖形;
(2)當點在運動過程中,旋轉(zhuǎn)角是否發(fā)生變化?若不變化,請求出的值,若變化,請說明理由;
(3)從點向射線作垂線,與射線的反向延長線交于點,探究線段和的數(shù)量關(guān)系并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】等腰△BCD中,∠DCB=120°,點E滿足∠DEC=60°.
(1)如圖1,點E在邊BD上時,求證:ED=2BE;
(2)如圖2,過點B作DE的垂線交DE的延長線于點F,試探究DE和EF的數(shù)量關(guān)系,并證明;
(3)若∠DEB=150°,直接寫出BE,DE和EC的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年第六屆世界互聯(lián)網(wǎng)大會在烏鎮(zhèn)召開,小南和小西參加了某分會場的志愿服務工作,本次志愿服務工作一共設(shè)置了三個崗位,分別是引導員、聯(lián)絡員和咨詢員.請你用畫樹狀圖或列表法求出小南和小西恰好被分配到同一個崗位進行志愿服務的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了堅持以人民為中心的發(fā)展思想,以不斷改善民生為發(fā)展的根本目的,某機構(gòu)隨機對某小區(qū)部分居民進行了關(guān)于“社區(qū)服務工作滿意度”的調(diào)查,并根據(jù)調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖表,根據(jù)圖標信息,解答下列問題:
滿意度 | 人數(shù) | 所占百分比 |
非常滿意 | 12 | |
滿意 | 54 | |
比較滿意 | ||
不滿意 | 6 |
(1)本次調(diào)查的總?cè)藬?shù)為_______.
(2)請補全條形統(tǒng)計圖;
(3)據(jù)統(tǒng)計,該社區(qū)服務站平均每天接待居民約1000名,若將“非常滿意”和“消意”作為居民對社區(qū)服務站服務工作的肯定,請你估計該社區(qū)服務站服務工作平均每天得到多少名居民的肯定.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店購進一批成本為每件 30 元的商品,經(jīng)調(diào)查發(fā)現(xiàn),該商品每天的銷售量 y(件)與銷售單價 x(元)之間滿足一次函數(shù)關(guān)系,其圖象如圖所示.
(1)求該商品每天的銷售量 y 與銷售單價 x 之間的函數(shù)關(guān)系式;
(2)若商店按單價不低于成本價,且不高于 50 元銷售,則銷售單價定為多少,才能使銷售該商品每天獲得的利潤 w(元)最大?最大利潤是多少?
(3)若商店要使銷售該商品每天獲得的利潤不低于 800 元,則每天的銷售量最少應為多少件?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)(為常數(shù)),當自變量的值滿足時,與其對應的函數(shù)值的最小值為4,則的值為( )
A.1或5B.或3C.或1D.或5
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了豐富學生課余生活,開展了“第二課堂”活動,推出了以下四種選修課程:.繪畫;.唱歌;.跳舞;.演講;.書法.學校規(guī)定:每個學生都必須報名且只能選擇其中的一個課程.學校隨機抽查了部分學生,對他們選擇的課程情況進行了統(tǒng)計,并繪制了如下兩幅不完整的統(tǒng)計圖.
請結(jié)合統(tǒng)計圖中的信息解決下列問題:
(1)這次抽查的學生人數(shù)是多少人?
(2)將條形統(tǒng)計圖補充完整.
(3)求扇形統(tǒng)計圖中課程所對應扇形的圓心角的度數(shù).
(4)如果該校共有1200名學生,請你估計該校選擇課程的學生約有多少人.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com