【題目】已知關(guān)于x的一元二次方程(m為實(shí)數(shù))有兩個(gè)實(shí)數(shù)根.(提示:若、是一元二次方程兩根,則有,)
(1)當(dāng)m為何值時(shí),?
(2)若,求m的值.
【答案】(1) (2)
【解析】
(1)當(dāng)m為何值時(shí)x1≠x2,即方程有兩個(gè)不同的根,則根的判別式>0;
(2)依據(jù)根與系數(shù)關(guān)系,可以設(shè)方程的兩根是x1、x2,則可以表示出兩根的和與兩根的積,
依據(jù)x12+x22=(x1+x2)2-2x1x2,即可得到關(guān)于m的方程,從而可求得m的值.
解:(1)x2+(m-1)x-2m2+m=0(m為實(shí)數(shù))有兩個(gè)實(shí)數(shù)根x1、x2.
∵a=1,b=m-1,c=-2m2+m,
∴=b2-4ac=(m-1)2-4(-2m2+m)=m2-2m+1+8m2-4m=9m2-6m+1=(3m-1)2,
要使x1≠x2,則應(yīng)有>0,即=(3m-1)2>0,
∴m≠;
(2)根據(jù)題意得:x1+x2=-=1-m,x1x2==-2m2+m,
∵x12+x22=2,即x12+x22=(x1+x2)2-2x1x2,即(1-m)2-2(-2m2+m)=2,
解得m1=,m2=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】動(dòng)點(diǎn)A(m+2,3m+4)在直線l上,點(diǎn)B(b,0)在x軸上,如果以B為圓心,半徑為1的圓與直線l有交點(diǎn),則b的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,四邊形ABCD中,E是對(duì)角線AC上一點(diǎn),DE=EC,以AE為直徑的⊙O與邊CD相切于點(diǎn)D,點(diǎn)B在⊙O上,連接OB.
(1)求證:DE=OE;
(2)若CD∥AB,求證:BC是⊙O的切線;
(3)在(2)的條件下,求證:四邊形ABCD是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司計(jì)劃購(gòu)買若干臺(tái)電腦,現(xiàn)從兩家商場(chǎng)了解到同一種型號(hào)的電腦報(bào)價(jià)均為元,并且多買都有一定的優(yōu)惠. 各商場(chǎng)的優(yōu)惠條件如下:
甲商場(chǎng)優(yōu)惠條件:第一臺(tái)按原價(jià)收費(fèi),其余的每臺(tái)優(yōu)惠;
乙商場(chǎng)優(yōu)惠條件:每臺(tái)優(yōu)惠.
設(shè)公司購(gòu)買臺(tái)電腦,選擇甲商場(chǎng)時(shí), 所需費(fèi)用為元,選擇乙商場(chǎng)時(shí),所需費(fèi)用為元,請(qǐng)分別求出與之間的關(guān)系式.
什么情況下,兩家商場(chǎng)的收費(fèi)相同?什么情況下,到甲商場(chǎng)購(gòu)買更優(yōu)惠?什么情況下,到乙商場(chǎng)購(gòu)買更優(yōu)惠?
現(xiàn)在因?yàn)榧毙瑁?jì)劃從甲乙兩商場(chǎng)一共買入臺(tái)某品牌的電腦,其中從甲商場(chǎng)購(gòu)買臺(tái)電腦.已知甲商場(chǎng)的運(yùn)費(fèi)為每臺(tái)元,乙商場(chǎng)的運(yùn)費(fèi)為每臺(tái)元,設(shè)總運(yùn)費(fèi)為元,在甲商場(chǎng)的電腦庫(kù)存只有臺(tái)的情況下,怎樣購(gòu)買,總運(yùn)費(fèi)最少?最少運(yùn)費(fèi)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在⊙O 中,點(diǎn) C 在優(yōu)弧 AB 上, 將弧 BC 沿 BC 折疊后剛好經(jīng)過 AB的中點(diǎn) D. 若⊙O的半徑為,AB=4,則 BC 的長(zhǎng)是( )
A.2B.3C.4D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,點(diǎn)D在邊AC上,且DE⊥AC交BC于點(diǎn)E.
(1)求證:△CDE∽△CBA;
(2)若AB=3,AC=5,E是BC中點(diǎn),求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到正方形,依此方式,繞點(diǎn)連續(xù)旋轉(zhuǎn)2019次得到正方形,如果點(diǎn)的坐標(biāo)為(1,0),那么點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形MNOK和正六邊形ABCDEF邊長(zhǎng)均為2,把正方形放在正六邊形中,使OK邊與AB邊重合,如圖所示,按下列步驟操作:將正方形在正六邊形中繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使KM邊與BC邊重合,完成第一次旋轉(zhuǎn);再繞點(diǎn)C順時(shí)針旋轉(zhuǎn),使MN邊與CD邊重合,完成第二次旋轉(zhuǎn);…在這樣連續(xù)6次旋轉(zhuǎn)的過程中,點(diǎn)B,M之間距離的最小值是_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com