【題目】如圖,矩形ABCD對(duì)角線(xiàn)ACBD交于點(diǎn)O,邊AB=6,AD=8,四邊形OCED為菱形,若將菱形OCED繞點(diǎn)O旋轉(zhuǎn)一周,旋轉(zhuǎn)過(guò)程中OE與矩形ABCD的邊的交點(diǎn)始終為M,則線(xiàn)段ME的長(zhǎng)度可取的整數(shù)值為___________________

【答案】3,45

【解析】

連接OECD與點(diǎn)M,根據(jù)矩形與菱形的性質(zhì),由勾股定理求出OE的長(zhǎng),在旋轉(zhuǎn)過(guò)程中,求出OM的取值范圍,進(jìn)而得出ME的取值范圍,進(jìn)而求解.

如圖,連接OECD與點(diǎn)M,

∵矩形ABCD對(duì)角線(xiàn)AC、BD交于點(diǎn)O,邊AB=6,AD=8,

,

∴由勾股定理知,,

∵四邊形OCED為菱形,

,

∴由勾股定理知,,即,

∵菱形OCED繞點(diǎn)O旋轉(zhuǎn)一周,旋轉(zhuǎn)過(guò)程中OE與矩形ABCD的邊的交點(diǎn)始終為M,

∴當(dāng)時(shí),OM取得最小值3

當(dāng)OEOAOBOCOD重合時(shí),OM取得最大值5

,

,

∴線(xiàn)段ME的長(zhǎng)度可取的整數(shù)值為3,4,5,

故答案為:3,45. 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BCAC,圓心OAC上,點(diǎn)M與點(diǎn)C分別是AC與⊙O的交點(diǎn),點(diǎn)DMB與⊙O的交點(diǎn),點(diǎn)PAD延長(zhǎng)線(xiàn)與BC的交點(diǎn),且ADAOAMAP

1)連接OP,證明:ADM∽△APO

2)證明:PD是⊙O的切線(xiàn);

3)若AD12AMMC,求PBDM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是等腰直角三角形,,,,,那么________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,2×2網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)為1)中有A,B,C,D,EF,GH,O九個(gè)格點(diǎn).拋物線(xiàn)l的解析式為y=(-1)nx2+bx+c(n為整數(shù)).

(1)n為奇數(shù),且l經(jīng)過(guò)點(diǎn)H(01)C(2,1),求b,c的值,并直接寫(xiě)出哪個(gè)格點(diǎn)是該拋物線(xiàn)上的頂點(diǎn);

(2)n為偶數(shù),且l經(jīng)過(guò)點(diǎn)A(1, 0)B(2,0),通過(guò)計(jì)算說(shuō)明點(diǎn)F(0,2)H(0,1)是否在拋物線(xiàn)上;

(3)l經(jīng)過(guò)這九個(gè)格點(diǎn)中的三個(gè),直接寫(xiě)出滿(mǎn)足這樣條件的拋物線(xiàn)條數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABO的直徑,AC是弦,點(diǎn)PBA延長(zhǎng)線(xiàn)上一點(diǎn),連接PCBC,∠PCA=∠B

1)求證:PCO的切線(xiàn);

2)若PC4,PA2,求直徑AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形中,上一點(diǎn),點(diǎn)從點(diǎn)沿折線(xiàn)運(yùn)動(dòng)到點(diǎn)時(shí)停止;點(diǎn)從點(diǎn)沿運(yùn)動(dòng)到點(diǎn)時(shí)停止,速度均為每秒1個(gè)單位長(zhǎng)度.如果點(diǎn),同時(shí)開(kāi)始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為的面積為,已知的函數(shù)圖象如圖2所示,有以下結(jié)論:

;

③當(dāng)時(shí),;

④當(dāng)時(shí),是等腰三角形;

⑤當(dāng)時(shí),

其中正確的有( ).

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,四邊形是正方形,點(diǎn)的坐標(biāo)為,弧是以點(diǎn)為圓心,為半徑的圓。换是以點(diǎn)為圓心,為半徑的圓弧;弧是以點(diǎn)為圓心,為半徑的圓弧;弧是以點(diǎn)為圓心,為半徑的圓弧,繼續(xù)以點(diǎn)為圓心,按上述作法得到的曲線(xiàn),稱(chēng)為正方形的“漸開(kāi)線(xiàn)”,則點(diǎn)的坐標(biāo)是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有這樣一個(gè)問(wèn)題:探究函數(shù)的圖象和性質(zhì).小奧根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究.下面是小奧的探究過(guò)程,請(qǐng)補(bǔ)充完整:

1)函數(shù)的自變量的取值范圍是_________

2)下表是的幾組對(duì)應(yīng)值,則的值為______,的值為______

1

2

3

4

5

2

3)如右圖,在平面直角坐標(biāo)系中,描出了以上表中各組對(duì)應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫(huà)出該函數(shù)的圖象;

4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第一象限內(nèi)的最低點(diǎn)的坐標(biāo)是.結(jié)合函數(shù)圖象,寫(xiě)出該函數(shù)的其他兩條性質(zhì):①_________,②_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知A(﹣4,),B(﹣1,m)是一次函數(shù)y=kx+b與反比例函數(shù)y=圖象的兩個(gè)交點(diǎn),AC⊥x軸于點(diǎn)C,BD⊥y軸于點(diǎn)D.

(1)求m的值及一次函數(shù)解析式;

(2)P是線(xiàn)段AB上的一點(diǎn),連接PC、PD,若△PCA△PDB面積相等,求點(diǎn)P坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案