【題目】(2017廣東省)如圖,AB是⊙O的直徑,AB=,點E為線段OB上一點(不與O,B重合),作CEOB,交⊙O于點C,垂足為點E,作直徑CD,過點C的切線交DB的延長線于點PAFPC于點F,連接CB

(1)求證:CB是∠ECP的平分線;

(2)求證:CF=CE

(3)當時,求劣弧的長度(結果保留π)

【答案】1)證明見解析;(2)證明見解析;(3

【解析】試題(1)、根據(jù)等角的余角相等證明即可;(2)、欲證明CF=CE,只要證明△ACF≌△ACE即可;(3)、作BMPFM.則CE=CM=CF,設CE=CM=CF=4a,PC=4aPM=a,利用相似三角形的性質(zhì)求出BM,求出tanBCM的值即可解決問題.

試題解析:(1)證明:∵OC=OB,∴∠OCB=∠OBC,∵PF是⊙O的切線,CEAB,∴∠OCP=∠CEB=90°,∴∠PCB+∠OCB=90°,∠BCE+∠OBC=90°,∴∠BCE=∠BCP,∴BC平分∠PCE

2)證明:連接AC

AB是直徑,∴∠ACB=90°,∴∠BCP+∠ACF=90°,∠ACE+∠BCE=90°,∵∠BCP=∠BCE,∴∠ACF=∠ACE,∵∠F=∠AEC=90°,AC=AC,∴△ACF≌△ACE,∴CF=CE

3)解:作BMPFM.則CE=CM=CF,設CE=CM=CF=4aPC=4a,PM=a,∵△BMC∽△PMB,∴,∴BM2=CMPM=3a2,∴BM=a,∴tanBCM=,∴∠BCM=30°,∴∠OCB=∠OBC=∠BOC=60°,∴的長= =

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某段河流的兩岸是平行的,數(shù)學興趣小組在老師帶領下不用涉水過河就測得的寬度,他們是這樣做的:①在河流的一條岸邊B點,選對岸正對的一棵樹A;②沿河岸直走20m有一棵樹C,繼續(xù)前行20m到達D處;③從D處沿河岸垂直的方向行走,當?shù)竭_A樹正好被C樹遮擋住的E處停止行走;④測得DE的長為5.

1)河的寬度是 .

2)請你說明他們做法的正確性.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,直線ABCD相交于點O,OA是∠EOC的角平分線.

1)若∠EOC80°,求∠BOD的度數(shù);

2)∠EOC:∠EOD23,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,⊙P的圓心是(2,a)(a >0),半徑是2,與y軸相切于點C,直線y=x被⊙P截得的弦AB的長為,則a的值是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,ADBC,垂足為點D,AN是ABC外角CAM的平分線,CEAN,垂足為點E,連接DE交AC于點F.

(1)求證:四邊形ADCE為矩形;

(2)當ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

(3)在(2)的條件下,若AB=AC=2,求正方形ADCE周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,A(-21),B(-4,-2)C(-1,-3),△A′B′C′是△ABC平移之后得到的圖象,并且C的對應點C′的坐標為(41)

(1)A′、B′兩點的坐標分別為A′______,B′______;

(2)作出△ABC平移之后的圖形△A′B′C′

(3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,GBC邊上一點,BEAGE,DFAGF,連接DE.

(1)求證:△ABE≌△DAF;

(2)若AF=1,四邊形ABED的面積為6,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在數(shù)學活動課上,小麗為了測量校園內(nèi)旗桿AB的高度,站在教學樓的C處測得旗桿底端B的俯角為45°,測得旗桿頂端A的仰角為30°.已知旗桿與教學樓的距離BD=9m,請你幫她求出旗桿的高度(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】8字”的性質(zhì)及應用:

1)如圖AD、BC相交于點O,得到一個“8字”ABCD,求證:∠A+B=∠C+D

2)圖中共有多少個“8字”?

3)如圖,∠ABC和∠ADC的平分線相交于點E,利用(1)中的結論證明∠E(∠A+C).

查看答案和解析>>

同步練習冊答案