若a>1,則比較a與的大小正確的是

[  ]

A.a>

B.a<

C.a>,或a<

D.不能確定

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解,回答問題.
在解決數(shù)學(xué)問題的過程中,有時會遇到比較兩數(shù)大小的問題,解決這類問題的關(guān)鍵是根據(jù)命題的題設(shè)和結(jié)論特征,采用相應(yīng)辦法,其中巧用“作差法”是解決此類問題的一種行之有效的方法:若a-b>0,則a>b;若a-b=0,則a=b;若a-b<0,則a<b.
例如:在比較m2+1與m2的大小時,小東同學(xué)的作法是:
∵(m2+1)-(m2)=m2+1-m2=1>0,
∴m2+1>m2
請你參考小東同學(xué)的作法,解決如下問題:
(1)請你比較4
3
與(2+
3
2的大;
(2)已知a、b為實數(shù),且ab=1,設(shè)M=
a
a+1
+
b
b+1
,N=
1
a+1
+
1
b+1
,試比較M、N的大。
(3)一天,小明爸爸的男同事來家做客,已知爸爸的年齡比小明年齡的平方大7歲,爸爸同事的年齡是小明年齡的5倍,請你幫忙算一算,小明該稱呼爸爸的這位同事為“叔叔”還是“大伯”?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•鹽都區(qū)一模)問題提出
我們在分析解決某些數(shù)學(xué)問題時,經(jīng)常要比較兩個數(shù)或代數(shù)式的大小,而解決問題的策略一般要進行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個邊長分別是a、b的小正方形及兩個矩形,試比較兩個小正方形面積之和M與兩個矩形面積之和N的大小.
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
(1)已知:多項式M=2a2-a+1,N=a2-2a.試比較M與N的大小.
(2)已知:如圖2,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a<b<c,現(xiàn)將△ABC 補成長方形,使得△ABC的兩個頂
點為長方形的兩個端點,第三個頂點落在長方形的這一邊的對邊上.
①這樣的長方形可以畫
3
3
個;
②所畫的長方形中哪個周長最。繛槭裁?
拓展延伸
已知:如圖3,銳角△ABC(其中BC為a,AC為b,AB為c)三邊滿足a<b<c,畫其BC邊上的內(nèi)接正方形EFGH,使E、F兩點在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知兩點A(1,2),B(5,2),若將它們的橫坐標(biāo)加3,縱坐標(biāo)不變得點P、Q,則線段PQ與線段AB的長( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:新教材完全解讀 七年級數(shù)學(xué)下冊 人教版 人教版 題型:013

若a>1,則比較a與的大小正確的是

[  ]

A.a>

B.a<

C.a>,或a<

D.不能確定

查看答案和解析>>

同步練習(xí)冊答案