【題目】(1)問題:如圖在中,,,為邊上一點(diǎn)(不與點(diǎn),重合),連接,過點(diǎn)作,并滿足,連接.則線段和線段的數(shù)量關(guān)系是_______,位置關(guān)系是_______.
(2)探索:如圖,當(dāng)點(diǎn)為邊上一點(diǎn)(不與點(diǎn),重合),與均為等腰直角三角形,,,.試探索線段,,之間滿足的等量關(guān)系,并證明你的結(jié)論;
(3)拓展:如圖,在四邊形中,,若,,請(qǐng)直接寫出線段的長(zhǎng).
【答案】(1)=;⊥;(2)+=;(3)2
【解析】
(1)根據(jù)同角的余角相等得出∠BAD=∠CAE,可證△ADB≌△AEC,由全等三角形的性質(zhì)即可得出結(jié)果;
(2)連結(jié)CE,同(1)的方法證得△ADB≌△AEC,根據(jù)全等三角形的性質(zhì)轉(zhuǎn)換角度,可得△DCE為直角三角形,即可得,,之間滿足的等量關(guān)系;
(3)在AD上方作EA⊥AD,連結(jié)DE,同(2)的方法證得△DCE為直角三角形,由已知和勾股定理求得DE的長(zhǎng),再根據(jù)等腰直角三角形的性質(zhì)和勾股定理即可求得AD的長(zhǎng).
解:=,⊥,理由如下:
∵,,
∴∠ABC=∠ACB=45°,
∵,
∴,
∴,即,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE,∠ABD=∠ACE=45°,
∴∠ACB+∠ACE=90°,即⊥,
故答案為:=;⊥.
(2)+=,證明如下:
如圖,連結(jié)CE,
∵與均為等腰直角三角形,
∴∠ABC=∠ACB=45°,,即,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE,∠ABD=∠ACE=45°,
∴∠ACB+∠ACE=90°,即⊥,則△DCE為直角三角形,
∴+=,
∴+=;
(3)如圖,作EA⊥AD,使得AE=AD,連結(jié)DE、CE,
∵,
∴,AB=AC,
∵,AE=AD,
∴,,
∴,即,
在△ADB和△AEC中,
,
∴△ADB≌△AEC(SAS),
∴BD=CE,
∵,則△DCE為直角三角形,
∵,,
∴,則,
在Rt△ADE中,AD=AE,
∴,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織一項(xiàng)球類對(duì)抗賽,在本校隨機(jī)調(diào)查了若干名學(xué)生,對(duì)他們每人最喜歡的球類運(yùn)動(dòng)進(jìn)行了統(tǒng)計(jì),并繪制如圖1、圖2所示的條形和扇形統(tǒng)計(jì)圖.
根據(jù)統(tǒng)計(jì)圖中的信息,解答下列問題:
(1)求本次被調(diào)查的學(xué)生人數(shù),并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若全校有1500名學(xué)生,請(qǐng)你估計(jì)該校最喜歡籃球運(yùn)動(dòng)的學(xué)生人數(shù);
(3)根據(jù)調(diào)查結(jié)果,請(qǐng)你為學(xué)校即將組織的一項(xiàng)球類比賽提出合理化建議.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2﹣2ax+c(a≠0)與y軸交于點(diǎn)C(0,4),與x軸交于點(diǎn)A、B,點(diǎn)A坐標(biāo)為(4,0).
(1)求該拋物線的解析式;
(2)拋物線的頂點(diǎn)為N,在x軸上找一點(diǎn)K,使CK+KN最小,并求出點(diǎn)K的坐標(biāo);
(3)點(diǎn)Q是線段AB上的動(dòng)點(diǎn),過點(diǎn)Q作QE∥AC,交BC于點(diǎn)E,連接CQ.當(dāng)△CQE的面積最大時(shí),求點(diǎn)Q的坐標(biāo);
(4)若平行于x軸的動(dòng)直線l與該拋物線交于點(diǎn)P,與直線AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(2,0).問:是否存在這樣的直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,DA、CB的延長(zhǎng)線交于點(diǎn)P,連接AC、BD,BD=BC.
(1)證明:AB平分∠PAC;
(2)若AC是直徑,AC=5,BC=4,求DC長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解學(xué)生的安全意識(shí)情況,在全校范圍內(nèi)隨機(jī)抽取部分學(xué)生進(jìn)行問卷調(diào)查,根據(jù)調(diào)查結(jié)果,把學(xué)生的安全意識(shí)分成“淡薄”、“一般”、“較強(qiáng)”、“很強(qiáng)”四個(gè)層次,并繪制成如下兩幅尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息,解答下列問題:
(1)這次調(diào)查一共抽取了 名學(xué)生,其中安全意識(shí)為“很強(qiáng)”的學(xué)生占被調(diào)查學(xué)生總數(shù)的百分比是 ;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校有1800名學(xué)生,現(xiàn)要對(duì)安全意識(shí)為“淡薄”、“一般”的學(xué)生強(qiáng)化安全教育,根據(jù)調(diào)查結(jié)果,估計(jì)全校需要強(qiáng)化安全教育的學(xué)生約有 名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與x軸的一個(gè)交點(diǎn)為B(4,0),另一個(gè)交點(diǎn)為A,且與y軸相交于C點(diǎn).
(1)求m的值及C點(diǎn)坐標(biāo);
(2)在直線BC上方的拋物線上是否存在一點(diǎn)M,使得它與B,C兩點(diǎn)構(gòu)成的三角形面積最大,若存在,求出此時(shí)M點(diǎn)坐標(biāo);若不存在,請(qǐng)簡(jiǎn)要說明理由;
(3)P為拋物線上一點(diǎn),它關(guān)于直線BC的對(duì)稱點(diǎn)為Q.
①當(dāng)四邊形PBQC為菱形時(shí),求點(diǎn)P的坐標(biāo);
②點(diǎn)P的橫坐標(biāo)為t(0<t<4),當(dāng)t為何值時(shí),四邊形PBQC的面積最大,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一根竹竿長(zhǎng)米,先像靠墻放置,與水平夾角為,為了減少占地空間,現(xiàn)將竹竿像放置,與水平夾角為,則竹竿讓出多少水平空間( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方形中,,,,,點(diǎn)從點(diǎn)出發(fā)(不含點(diǎn))以的速度沿的方向運(yùn)動(dòng)到點(diǎn)停止,點(diǎn)出發(fā)后,點(diǎn)才開始從點(diǎn)出發(fā)以的速度沿的方向運(yùn)動(dòng)到點(diǎn)停止,當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),點(diǎn)恰好到達(dá)點(diǎn).
(1)當(dāng)點(diǎn)到達(dá)點(diǎn)時(shí),的面積為,求的長(zhǎng);
(2)在(1)的條件下,設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為,運(yùn)動(dòng)過程中的面積為,請(qǐng)用含的式子表示面積,并直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊的邊長(zhǎng)為,點(diǎn)、分別是邊、上的動(dòng)點(diǎn),點(diǎn)、分別從頂點(diǎn)、同時(shí)出發(fā),且它們的速度都為.
(1)如圖1,連接,求經(jīng)過多少秒后,是直角三角形;
(2)如圖2,連接、交于點(diǎn),在點(diǎn)、運(yùn)動(dòng)的過程中,的大小是否變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出它的度數(shù).
(3)如圖3,若點(diǎn)、運(yùn)動(dòng)到終點(diǎn)后繼續(xù)在射線、上運(yùn)動(dòng),直線、交于點(diǎn),則的大小是否變化?若變化,請(qǐng)說明理由;若不變,請(qǐng)求出它的度數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com