【題目】△ABC 中,AB=AC=12 厘米,∠B=∠C,BC=8 厘米,點(diǎn) D 為 AB 的中點(diǎn).如果點(diǎn) P 在線(xiàn)段 BC 上以 2 厘米/秒 的速度由 B 點(diǎn)向 C 點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線(xiàn)段 CA 上由 C 點(diǎn)向 A 點(diǎn)運(yùn)動(dòng).若點(diǎn) Q 的運(yùn)動(dòng)速度為 v 厘米/秒,則當(dāng)△BPD 與△CQP 全等時(shí),v 的值為( )
A.2B.5C.1 或 5D.2 或 3
【答案】D
【解析】
此題要分兩種情況:①當(dāng)BD=PC時(shí),△BPD與△CQP全等,計(jì)算出BP的長(zhǎng),進(jìn)而可得運(yùn)動(dòng)時(shí)間,然后再求v;②當(dāng)BD=CQ時(shí),△BDP≌△QCP,計(jì)算出BP的長(zhǎng),進(jìn)而可得運(yùn)動(dòng)時(shí)間,然后再求v.
當(dāng)BD=PC時(shí),△BPD與△CQP全等,
∵點(diǎn)D為AB的中點(diǎn),
∴BD=AB=6cm,
∵BD=PC,
∴BP=8-6=2(cm),
∵點(diǎn)P在線(xiàn)段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),
∴運(yùn)動(dòng)時(shí)間時(shí)1s,
∵△DBP≌△PCQ,
∴BP=CQ=2cm,
∴v=2÷1=2;
當(dāng)BD=CQ時(shí),△BDP≌△QCP,
∵BD=6cm,PB=PC,
∴QC=6cm,
∵BC=8cm,
∴BP=4cm,
∴運(yùn)動(dòng)時(shí)間為4÷2=2(s),
∴v=6÷2=3(m/s),
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC和△DEB中,已知AB=DE,還需添加兩個(gè)條件才能使△ABC≌△DEC,不能添加的一組條件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABF中,BE⊥AF垂足為E,AD∥BC,且AF平分∠DAB,求證:(1)FC=AD;(2)AB=BC+AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC上的高,tanB=cos∠DAC.
(1)求證:AC=BD;
(2)若sin∠C=,BC=12,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(9分)如圖所示,某數(shù)學(xué)活動(dòng)小組選定測(cè)量小河對(duì)岸大樹(shù)BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹(shù)頂端B的仰角是30,朝大樹(shù)方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹(shù)頂端B的仰角是48°. 若坡角∠FAE=30°,求大樹(shù)的高度. (結(jié)果保留整數(shù),參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰△ABC中,∠BAC=30°,AB=AC,∠PAB=α,點(diǎn)B關(guān)于直線(xiàn)AP的對(duì)稱(chēng)點(diǎn)為點(diǎn)D,連接AD,連接BD交AP于點(diǎn)G,連接CD交AP于點(diǎn)E,交AB于點(diǎn)F.
(1)如圖當(dāng)α=15°時(shí),①按要求畫(huà)出圖形,②求出∠ACD的度數(shù),③探究DE與BF的倍數(shù)關(guān)系并加以證明;
(2)在直線(xiàn)AP繞點(diǎn)A順時(shí)針旋轉(zhuǎn)的過(guò)程中(0°<α<75°),當(dāng)△AEF為等腰三角形時(shí),畫(huà)出相應(yīng)圖形直接求出α的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老師所留的作業(yè)中有這樣一個(gè)分式的計(jì)算題:,甲、乙兩位同學(xué)完成的過(guò)程分別如下:
老師發(fā)現(xiàn)這兩位同學(xué)的解答都有錯(cuò)誤.
請(qǐng)你從甲、乙兩位同學(xué)中,選擇一位同學(xué)的解答過(guò)程,幫助他分析錯(cuò)因,并加以改正.
(1)我選擇 同學(xué)的解答過(guò)程進(jìn)行分析.(填“甲”或“乙”)該同學(xué)的解答從第 步開(kāi)始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是 ;
(2)請(qǐng)重新寫(xiě)出完成此題的正確解答過(guò)程.
.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC=BC,∠ACB=90°,BD平分∠ABC交AC于點(diǎn)D,BD=6,則△ABD的面積為__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在4×5的網(wǎng)格中,最小正方形的邊長(zhǎng)為1,A,B,C,D均為格點(diǎn)(最小正方形的頂點(diǎn)).
(1)如圖1,畫(huà)出所有以AB為一邊且與△ABC全等的格點(diǎn)三角形.
(2)如圖2,在線(xiàn)段AB上畫(huà)出一點(diǎn)P,使CP+PD最小,其最小值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com