【題目】如圖,在ABCD中,E是AD上一點,延長CE到點F,使∠FBC=∠DCE.
(1)求證:∠D=∠F;
(2)用直尺和圓規(guī)在AD上作出一點P,使△BPC∽△CDP(保留作圖的痕跡,不寫作法).
【答案】
(1)
證明:BE交AD于G,如圖,
∵四邊形ABCD為平行四邊形,
∴AD∥BC,
∴∠FBC=∠FGE,
而∠FBC=∠DCE,
∴∠FGE=∠DCE,
∵∠GEF=∠DEC,
∴∠D=∠F
(2)
解:解:如圖,點P為所作.
【解析】(1)BE交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根據(jù)三角形內(nèi)角和定理易得∠D=∠F;(2)分別作BC和BF的垂直平分線,它們相交于點O,然后以O為圓心,OC為半徑作△BCF的外接圓⊙O,⊙O交AD于P,連結(jié)BP、CP,則根據(jù)圓周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接著可證明∠PCD=∠APB=∠PBC,于是可判斷△BPC∽△CDP.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點D,E,F(xiàn),⊙O是△BEF的外接圓,∠EBF的平分線交EF于點G,交⊙O于點H,連接BD、FH.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某校九年級學生的身高情況,隨機抽取部分學生的身高進行調(diào)查,利用所得數(shù)據(jù)繪成如圖統(tǒng)計圖表:
頻數(shù)分布表
身高分組 | 頻數(shù) | 百分比 |
x<155 | 5 | 10% |
155≤x<160 | a | 20% |
160≤x<165 | 15 | 30% |
165≤x<170 | 14 | b |
x≥170 | 6 | 12% |
總計 | 100% |
(1)填空:a= , b=;
(2)補全頻數(shù)分布直方圖;
(3)該校九年級共有600名學生,估計身高不低于165cm的學生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了讓書籍開拓學生的視野,陶冶學生的情操,向陽中學開展了“五個一”課外閱讀活動,為了解全校學生課外閱讀情況,抽樣調(diào)查了50名學生平均每天課外閱讀時間(單位:min),將抽查得到的數(shù)據(jù)分成5組,下面是尚未完成的頻數(shù)、頻率分布表:
組別 | 分組 | 頻數(shù)(人數(shù)) | 頻率 |
1 | 10≤t<30 | ① | 0.16 |
2 | 30≤t<50 | 20 | ② |
3 | 50≤t<70 | ③ | 0.28 |
4 | 70≤t<90 | 6 | ④ |
5 | 90≤t<110 | ⑤ | ⑥ |
(1)將表中空格處的數(shù)據(jù)補全,完成上面的頻數(shù)、頻率分布表;
(2)請在給出的平面直角坐標系中畫出相應的頻數(shù)直方圖;
(3)如果該校有1500名學生,請你估計該校共有多少名學生平均每天閱讀時間不少于50min?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校九年級有24個班,共1000名學生,他們參加了一次數(shù)學測試,學校統(tǒng)計了所有學生的成績,得到下列統(tǒng)計圖.
(1)求該校九年級學生本次數(shù)學測試成績的平均數(shù);
(2)下列關于本次數(shù)學測試說法正確的是( )
A.九年級學生成績的眾數(shù)與平均數(shù)相等
B.九年級學生成績的中位數(shù)與平均數(shù)相等
C.隨機抽取一個班,該班學生成績的平均數(shù)等于九年級學生成績的平均數(shù)
D.隨機抽取300名學生,可以用他們成績的平均數(shù)估計九年級學生成績的平均數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8,點F在邊AC上,并且CF=2,點E為邊BC上的動點,將△CEF沿直線EF翻折,點C落在點P處,則點P到邊AB距離的最小值是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC的OA邊在x軸的正半軸上,OC在y軸的正半軸上,拋物線y=ax2+bx經(jīng)過點B(1,4)和點E(3,0)兩點.
(1)求拋物線的解析式;
(2)若點D在線段OC上,且BD⊥DE,BD=DE,求D點的坐標;
(3)在條件(2)下,在拋物線的對稱軸上找一點M,使得△BDM的周長為最小,并求△BDM周長的最小值及此時點M的坐標;
(4)在條件(2)下,從B點到E點這段拋物線的圖象上,是否存在一個點P,使得△PAD的面積最大?若存在,請求出△PAD面積的最大值及此時P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知P是線段AB的黃金分割點,且PA>PB,若S1表示PA為一邊的正方形的面積,S2表示長是AB,寬是PB的矩形的面積,則S1S2 . (填“>”“=”或“<”)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com