【題目】
如圖,把△EFP放置在菱形ABCD中,使得頂點(diǎn)E,F(xiàn),P分別在線段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>.
⑴求∠EPF的大;
⑵若AP=8,求AE+AF的值;
⑶若△EFP的三個(gè)頂點(diǎn)E,F,P分別在線段AB,AD,AC上運(yùn)動(dòng),請(qǐng)直接寫出AP長(zhǎng)的最大值和最小值.
【答案】(1)120°;(2);(3)AP的最大值為12,AP的最小值為6.
【解析】
試題分析:(1)如圖,過(guò)點(diǎn)P作PG⊥EF于G,已知PE=PF=6,EF=,根據(jù)等腰三角形的性質(zhì)可得FG=EG=,∠FPG=∠EPG=.在Rt△FPG中,由sin∠FPG=可求得∠FPG=60°,所以∠EPF=2∠FPG=120°.(2)作PM⊥AB于M,PN⊥AD于N,根據(jù)菱形的性質(zhì)可得∠DAC=∠BAC,AM=AN,PM=PN,再利用HL證明Rt△PME≌Rt△PNF,即可得NF=ME.又因AP=10,,所以AM= AN =APcos30°==.所以AE+AF=(AM+ME)+(AN-NF)=AM+AN=.(3)如圖,當(dāng)△EFP的三個(gè)頂點(diǎn)E,F(xiàn),P分別在線段AB,AD,AC上運(yùn)動(dòng)時(shí),點(diǎn)P在,之間運(yùn)動(dòng),易知,,所以AP的最大值為12,AP的最小值為6.
試題解析:(1)如圖,過(guò)點(diǎn)P作PG⊥EF于G.
∵PE=PF=6,EF=,
∴FG=EG=,∠FPG=∠EPG=.
在Rt△FPG中,sin∠FPG=.
∴∠FPG=60°,
∴∠EPF=2∠FPG=120°.
(2)作PM⊥AB于M,PN⊥AD于N.
∵AC為菱形ABCD的對(duì)角線,
∴∠DAC=∠BAC,AM=AN,PM=PN.
在Rt△PME和Rt△PNF 中,PM=PN,PE=PF,
∴Rt△PME≌Rt△PNF
∴NF=ME.
又AP=10,,
∴AM= AN =APcos30°==.
∴AE+AF=(AM+ME)+(AN-NF)=AM+AN=.
(3) 如圖,當(dāng)△EFP的三個(gè)頂點(diǎn)E,F(xiàn),P分別在線段AB,AD,AC上運(yùn)動(dòng)時(shí),點(diǎn)P在,之間運(yùn)動(dòng),易知,,
∴AP的最大值為12,AP的最小值為6.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】四邊形的四邊順次為a、b、c、d,且滿足a2+b2+c2+d2=2(ab+cd),則這個(gè)四邊形一定是( )
A.平行四邊形
B.兩組對(duì)角分別相等的四邊形
C.對(duì)角線互相垂直的四邊形
D.對(duì)角線長(zhǎng)相等的四邊形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把矩形ABCD沿EF翻折,點(diǎn)B恰好落在AD邊的B′處,若AE=2,DE=6,∠EFB=60°,則矩形ABCD的面積是( )
A.12
B.24
C.12
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=BC,D、E、F分別是BC、AC、AB邊上的中點(diǎn).
(1)求證:四邊形BDEF是菱形;
(2)若AB=12cm,求菱形BDEF的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,對(duì)角線AC=6,BD=8,M、N分別是BC、CD的中點(diǎn),P是線段BD上的一個(gè)動(dòng)點(diǎn),則PM+PN的最小值是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算
(1)( )2﹣(﹣3)0
(2)8a3﹣3a5÷a2
(3)4ab(2a2b2﹣ab+3)
(4)(x+y)2﹣(x﹣y)(x+y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩個(gè)直角三角形重疊在一起,將其中一個(gè)三角形沿著點(diǎn)B到點(diǎn)C的方向平移到△DEF的位置,∠B=90°,AB=8,DH=3,平移距離為4,求陰影部分的面積為( )
A.20
B.24
C.25
D.26
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com