【題目】問題:探究函數(shù)y=|x|-1的性質(zhì).
小凡同學(xué)根據(jù)學(xué)習函數(shù)的經(jīng)驗,對函數(shù)y=|x|-1的圖象與性質(zhì)進行了探究.下面是小凡的探究過程,請補充完整:
(1)在函數(shù)y=|x|-1中,自變量x的取值范圍是______________;
(2)下表是y與x的幾組對應(yīng)值.
x | -3 | -2 | -1 | 0 | 1 | 2 | 3 | ||
y | 2 | 1 | 0 | -1 | 0 | 1 | m |
①m=_________;
②若A(n,9),B(10,9)為該函數(shù)圖象上不同的兩點,則_n=__________;
(3)如下圖,在平面直角坐標系xOy中,描出以上表中各對對應(yīng)值為坐標的點.并根據(jù)描出的點,畫出該函數(shù)的圖象;
(4)結(jié)合函數(shù)圖象,解決問題:
①函數(shù)的最小值為________;
②已知直線與函數(shù)的圖象交于C,D兩點,當y1≥y時x的取值范圍是___________.
【答案】(1)全體實數(shù)(或任意實數(shù)) (2)①2 ②-10 (3)作圖見解析 (4)①-1 ②
【解析】
(1)根據(jù)函數(shù)和圖象的性質(zhì),寫出自變量x的取值范圍即可;
(2)①根據(jù)函數(shù)解析式求出m的值即可;②根據(jù)函數(shù)解析式求出n的值即可;
(3)利用描點法作出圖象即可;
(4)①根據(jù)圖象求出最小值即可;②分情況討論:1)當時,2)當時,分別列不等式求解即可.
(1)根據(jù)函數(shù)和圖象的性質(zhì)可得,自變量x的取值范圍是全體實數(shù)(或任意實數(shù));
(2)①令,則;
②∵A(n,9),B(10,9)為該函數(shù)圖象上不同的兩點
∴且
解得;
(3)如圖所示,即為所求;
(4)①如圖所示,當時,函數(shù)有最小值,最小值為-1;
②1)當時,
∵
∴
解得
∴
2)當時,
∵
∴
解得
∴
綜上所述,.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板按如圖放置,小明得到下列結(jié)論:①如果∠2=30°,則有AC∥DE;②∠BAE+∠CAD=180°;③如果BC∥AD,則有∠2=30°;④如果∠CAD=150°,則∠4=∠C;那么其中正確的結(jié)論有________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90,AC=BC=1,E、F為線段AB上兩動點,且∠ECF=45°,過點E、F分別作BC、AC的垂線相交于點M,垂足分別為H、G.現(xiàn)有以下結(jié)論:①AB=;②當點E與點B重合時,MH=;③AF+BE=EF;④MGMH=,其中正確結(jié)論為( )
A. ①②③ B. ①③④ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一組對邊相等目這一組對邊所在直線互相垂直的凸四邊形叫做“等垂四邊形”.
(1)如圖①,四邊形與四邊形都是正方形,,求證:四邊形是“等垂四邊形”;
(2)如圖②,四邊形是“等垂四邊形”,,連接,點,,分別是AD,BC,BD的中點,連接EG,FG,EF.試判定的形狀,并證明;
(3)如圖③,四邊形是“等垂四邊形”,,,試求邊AB長的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,∠ABD的平分線BE交AD于點E,∠CDB的平分線DF交BC于點F.
(1)求證:△ABE≌△CDF;
(2)若AB=DB,猜想:四邊形DFBE是什么特殊的四邊形?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,BC= ,∠C=30°.點D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動.設(shè)點D、E運動的時間是t秒(t>0).過點D作DF⊥BC于點F,連接DE、EF.
(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.
(3)當t為何值時,△DEF為直角三角形?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某辦公大樓正前方有一根高度是米的旗桿,從辦公樓頂端測得旗桿頂端的俯角是,旗桿底端到大樓前梯坎底邊的距離是米,梯坎坡長是米,梯坎坡度,求大樓的高度.(精確到米,參與數(shù)據(jù): , , )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標系中,的頂點坐標為:,,.
(1)將向左平移2個單位長度,再向上平移1個單位長度,得.畫出并寫出的頂點坐標;
(2)請判斷的形狀并求它的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,學(xué)校準備在教學(xué)樓后面搭建一簡易矩形自行車車棚,一邊利用教學(xué)樓的后墻(可利用的墻長為19m),另外三邊利用學(xué)校現(xiàn)有總長38m的鐵欄圍成。
(1)若圍成的面積為180m2,試求出自行車車棚的長和寬;
(2)能圍成的面積為200m2自行車車棚嗎?如果能,請你給出設(shè)計方案;如果不能,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com