如圖,⊙O是△ABC的外接圓,∠A=30°,AB是⊙O的直徑,過點C作⊙O的切線,交AB延長線于D,CD=3
3
cm,
(1)求⊙O的直徑;
(2)若動點M以3cm/s的速度從點A出發(fā)沿AB方向運動,同時點N以1.5cm/s的速度從B點出發(fā)沿BC方向運動.設(shè)運動的時間為t(0≤t≤2),連接MN,當(dāng)t為何值時△BMN為直角三角形?并求此時該三角形的面積?
(1)連接OC,
∵CD為切線,
∴∠DCO=90°
∵∠A=30°,OA=OC,
∴∠ACO=30°
∵AB是直徑,
∴∠ACB=90°,∠OCB=60°,
∴∠BCD=30°,∠ABC=60°,
∴∠BCD=∠A=30°,∠D=30°,
∴∠A=∠D,
∴AC=CD=3
3
,即AB=6cm.

(2)如圖1:當(dāng)∠BNM=90°時,MNAC,
6-3t
6
=
1.5t
3
,得t=1,即MN恰為△ACB的中位線,
S=
1
2
×
3
2
×
3
3
2
=
9
3
8
cm2,
當(dāng)∠BMN=90°時,cos∠MBN=
BM
BN
,
即cos60°=
6-3t
1.5t
,解得t=1.6,
此時,MN=
3
BM=
3
(6-3t)=1.2
3

S=
1
2
×1.2
3
×1.2=
18
3
25
cm2
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,AC為⊙O的直徑且PA⊥AC,BC是⊙O的一條弦,直線PB交直線AC于點D,
DB
DP
=
DC
DO
=
2
3

(1)求證:直線PB是⊙O的切線;
(2)求cos∠BCA的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB=AC,直線XY切⊙O于點C,弦BDXY,AC、BD相交于點E.
(1)求證:△ABE≌△ACD;
(2)若AB=6cm,BC=4cm,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,某航天飛船在地球表面P點的正上方A處,從A處觀測到地球上的最遠(yuǎn)點Q,若∠QAP=α,地球半徑為R,則航天飛船距離地球表面的最近距離AP=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,PA、PB分別切⊙O于點A、B,如果∠C=70°,則∠P的度數(shù)是( 。
A.40°B.55°C.60°D.70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

直角坐標(biāo)系中,以P(4,2)為圓心,a為半徑的圓與坐標(biāo)軸恰好有三個公共點,則a的值為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,點C是⊙O上的一點,CD交AB的延長線于D,∠DCB=∠CAB.
(1)求證:CD為⊙O的切線.
(2)若CD=4,BD=2,求⊙O的半徑長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,以O(shè)為圓心的兩個同心圓中,大圓的弦AB切小圓于點C,若∠AOB=120°,則大圓半徑R與小圓半徑r之間滿足的關(guān)系為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

△ABC是半徑為
15
的圓內(nèi)接三角形,以A為圓心,
6
2
為半徑的⊙A與邊BC相切于D點,則AB•AC的值為( 。
A.
3
10
2
B.4C.
5
2
D.3
10

查看答案和解析>>

同步練習(xí)冊答案