如圖所示,在圖(1)中互不重疊的三角形共有4個,在圖(2)中互不重疊的三角形共有7個,在圖(3)中互不重疊的三角形共有10個,…,則在圖(6)中,互不重疊的三角形共有(  )
分析:根據(jù)圖形結(jié)合題目所給數(shù)據(jù)尋找規(guī)律,發(fā)現(xiàn)圖2比圖1多3個互不重疊的三角形,即4+3個;圖3比圖2多3個互不重疊的三角形,即4+3×2個;依此類推,圖n中互不重疊的三角形的個數(shù)是4+3(n-1),即3n+1個.
解答:解:第(1)個圖中三角形有3×1+1=4(個);
第(2)個圖中三角形有3×2+1=7(個);
第(3)個圖中三角形有3×3+1=10(個),
照此規(guī)律,第(6)個圖中三角形有3×6+1=19(個).
故選C.
點評:本題考查了圖形的變化類問題,把圖形和數(shù)據(jù)相結(jié)合,找出其中的內(nèi)在聯(lián)系,按照規(guī)律便能順利解題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

24、已知:如圖①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且點B,A,D在一條直線上,連接BE,CD,M,N分別為BE,CD的中點.
(1)求證:BE=CD;
(2)求證:△AMN是等腰三角形;
(3)在圖①的基礎(chǔ)上,將△ADE繞點A按順時針方向旋轉(zhuǎn),使D點落在線段AB上,其他條件不變,得到圖②所示的圖形.(1)、(2)中的兩個結(jié)論是否仍然成立嗎?請你直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在平面直角坐標(biāo)系中.二次函數(shù)y=a(x-2)2-1圖象的頂點為P,與x軸交點為A、B,與y軸交點為C.連接BP并延長交y軸于點D.連接AP,△APB為等腰直角三角形.
精英家教網(wǎng)
(1)求a的值和點P、C、D的坐標(biāo);
(2)連接BC、AC、AD.將△BCD繞點線段CD上一點E逆時針方向旋轉(zhuǎn)90°,得到一個新三角形.設(shè)該三角形與△ACD重疊部分的面積為S.
①當(dāng)點E在(0,1)時,在圖中畫出旋轉(zhuǎn)后的三角形,并出求S;
②當(dāng)點E在線段CD(端點C、D除外)上運動時,設(shè)E(0,b),用含b的代數(shù)式表示S,并判斷當(dāng)b為何值時,重疊部分的面積最大,寫出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖(1),矩形紙片ABCD中,AD=28cm,AB=20cm.
(1)將矩形ABCD沿折線AE對折,使AB與AD邊重合,B點落在F點處(如圖(2)所示);再剪去四邊形CEFD,余下的部分如圖(3)所示.若將余下的紙片展形,則所得的四邊形ABEF的形狀是
 
,它的面積為
 
cm2
(2)將圖(3)中的紙片沿折線AG對折,使AF與AE邊重合,F(xiàn)點落在H點處(如圖(4)所示),再沿HG將△HE剪去,余下的部分如圖(5)所示.把圖(5)的紙片完全展開,請你在圖(6)的矩形ABCD中畫出展開后圖形的示意圖,剪去的部分用陰影表示,折痕用虛線表示.
(3)求圖(5)中的紙片完全展形后圖形的面積(結(jié)果保留整數(shù)).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖(1),矩形紙片ABCD中,AD=28cm,AB=20cm.
(1)將矩形ABCD沿折線AE對折,使AB與AD邊重合,B點落在F點處(如圖(2)所示);再剪去四邊形CEFD,余下的部分如圖(3)所示.若將余下的紙片展形,則所得的四邊形ABEF的形狀是______,它的面積為______cm2
(2)將圖(3)中的紙片沿折線AG對折,使AF與AE邊重合,F(xiàn)點落在H點處(如圖(4)所示),再沿HG將△HE剪去,余下的部分如圖(5)所示.把圖(5)的紙片完全展開,請你在圖(6)的矩形ABCD中畫出展開后圖形的示意圖,剪去的部分用陰影表示,折痕用虛線表示.
(3)求圖(5)中的紙片完全展形后圖形的面積(結(jié)果保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:期中題 題型:解答題

如圖所示,在平面直角坐標(biāo)系xoy中,M是X軸正半軸上一點,⊙M與X軸的正半軸交于A、B兩點,A在B的左側(cè),且OA、OB的長是方程x2-12x+27=0的兩根,ON是⊙M的切線,N為切點,N在第四象限。
(1)求⊙M的直徑;
(2)求直線ON對應(yīng)的函數(shù)關(guān)系式;
(3)在x軸上是否存在一點T,使△OTN是等腰三角形?若存在,請直接寫出T的坐標(biāo);若不存在,請說明理由。

查看答案和解析>>

同步練習(xí)冊答案