(2012•達(dá)州)如圖,在梯形ABCD中,AD∥BC,E、F分別是AB、CD的中點(diǎn),則下列結(jié)論:
①EF∥AD;②S△ABO=S△DCO;③△OGH是等腰三角形;④BG=DG;⑤EG=HF.
其中正確的個(gè)數(shù)是(  )
分析:根據(jù)梯形的中位線推出①,求出△ABD和△ACD的面積,都減去△AOD的面積,即可判斷②;只有等腰梯形ABCD,才能得出∠OBC=∠OCB,再根據(jù)平行線性質(zhì)即可判斷③;根據(jù)平行線分線段定理即可得出G、H分別為BD和AC中點(diǎn),即可判斷④;根據(jù)三角形的中位線得出EH=FG,即可得出EG=FH,即可判斷⑤.
解答:解:∵在梯形ABCD中,AD∥BC,E、F分別是AB、CD的中點(diǎn),
∴EF∥AD∥BC,∴①正確;
∵在梯形ABCD中,設(shè)梯形ABCD的高是h,
則△ABD的面積是
1
2
AD×h,△ACD的面積是:
1
2
AD×h,
∴S△ABD=S△ACD,
∴S△ABD-S△AOD=S△ACD-S△AOD,
即S△ABO=S△DCO,∴②正確;
∵EF∥BC,
∴∠OGH=∠OBC,∠OHG=∠OCB,
已知四邊形ABCD是梯形,不一定是等腰梯形,
即∠OBC和∠OCB不一定相等,
即∠OGH和∠OHG不一定相等,∠GOH和∠OGH或∠OHG也不能證出相等,
∴說(shuō)△OGH是等腰三角形不對(duì),∴③錯(cuò)誤;
∵EF∥BC,AE=BE(E為AB中點(diǎn)),
∴BG=DG,∴④正確;
∵EF∥BC,AE=BE(E為AB中點(diǎn)),
∴AH=CH,
∵E、F分別為AB、CD的中點(diǎn),
∴EH=
1
2
BC,F(xiàn)G=
1
2
BC,
∴EH=FG,
∴EG=FH,
∴EH-GH=FG-GH,
∴EG=HF,
∴⑤正確;
∴正確的個(gè)數(shù)是4個(gè),
故選D.
點(diǎn)評(píng):本題考查了等腰梯形性質(zhì),梯形的中位線,平行線分線段成比例定理,三角形的中位線等知識(shí)點(diǎn)的應(yīng)用,主要考查學(xué)生的推理能力和辨析能力,題型較好,但是一道比較容易出錯(cuò)的題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•達(dá)州)如圖,⊙O是△ABC的外接圓,連接OB、OC,若OB=BC,則∠BAC等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•達(dá)州)如右圖,在某十字路口,汽車(chē)可直行、可左轉(zhuǎn)、可右轉(zhuǎn).若這三種可能性相同,則兩輛汽車(chē)經(jīng)過(guò)該路口都向右轉(zhuǎn)的概率為
1
9
1
9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•達(dá)州)如圖,C是以AB為直徑的⊙O上一點(diǎn),過(guò)O作OE⊥AC于點(diǎn)E,過(guò)點(diǎn)A作⊙O的切線交OE的延長(zhǎng)線于點(diǎn)F,連接CF并延長(zhǎng)交BA的延長(zhǎng)線于點(diǎn)P.
(1)求證:PC是⊙O的切線.
(2)若AF=1,OA=2
2
,求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•達(dá)州)如圖1,在直角坐標(biāo)系中,已知點(diǎn)A(0,2)、點(diǎn)B(-2,0),過(guò)點(diǎn)B和線段OA的中點(diǎn)C作直線BC,以線段BC為邊向上作正方形BCDE.
(1)填空:點(diǎn)D的坐標(biāo)為
(-1,3)
(-1,3)
,點(diǎn)E的坐標(biāo)為
(-3,2)
(-3,2)

(2)若拋物線y=ax2+bx+c(a≠0)經(jīng)過(guò)A、D、E三點(diǎn),求該拋物線的解析式.
(3)若正方形和拋物線均以每秒
5
個(gè)單位長(zhǎng)度的速度沿射線BC同時(shí)向上平移,直至正方形的頂點(diǎn)E落在y軸上時(shí),正方形和拋物線均停止運(yùn)動(dòng).
①在運(yùn)動(dòng)過(guò)程中,設(shè)正方形落在y軸右側(cè)部分的面積為s,求s關(guān)于平移時(shí)間t(秒)的函數(shù)關(guān)系式,并寫(xiě)出相應(yīng)自變量t的取值范圍.
②運(yùn)動(dòng)停止時(shí),求拋物線的頂點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案