【題目】如圖,中,,的中點(diǎn),繞點(diǎn)旋轉(zhuǎn),分別與邊交于兩點(diǎn)

⑴求證:是等腰直角三角形;

⑵求證:;

⑶若的長(zhǎng)為16,求四邊形的面積.

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)32

【解析】

1)根據(jù)等腰直角三角形的性質(zhì),得到∠C=∠BAD45°,ADBDCD,然后利用ASA證明三角形全等,即可得到結(jié)論;

2)由(1)可知,AECF然后得到結(jié)論成立;

3)由(1)可知,利用全等三角形面積相等,即可求出四邊形的面積.

(1)證明:∵RtABC中,ABAC,點(diǎn)DBC中點(diǎn),

∴∠C=∠BAD45°ADBDCD

∵∠MDN90°,

∴∠ADE+ADF=∠ADF+CDF90°

∴∠ADE=∠CDF

AEDCFD中,

,

∴△AED≌△CFDASA),

EDFD.;

(2)由(1)得,△AED≌△CFD,

AECF

BE+CFBE+AE=AB=AC;

3)∵△AED≌△CFD

S四邊形AEDFSADE+ SADF

SCDF+ SADF = SADC

= AD2

由已知可得,ADBDCD=8

S四邊形AEDF= AD2==32

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】榮昌公司要將本公司100噸貨物運(yùn)往某地銷售,經(jīng)與春晨運(yùn)輸公司協(xié)商,計(jì)劃租用甲,乙兩種型號(hào)的汽車共6輛,用這6輛汽車一次將貨物全部運(yùn)走,其中每輛甲型汽車最多能裝該種貨物16噸,每輛乙型汽車最多能裝該種貨物18噸.已知租用1輛甲型汽車和2輛乙型汽車共需費(fèi)用2500元;租用2輛甲型汽車和1輛乙型汽車共需費(fèi)用2450元,且同一種型號(hào)汽車每輛租車費(fèi)用相同.

(1)求租用一輛甲型汽車,一輛乙型汽車的費(fèi)用分別是多少元?

(2)若榮昌公司計(jì)劃此次租車費(fèi)用不超過(guò)5000元.通過(guò)計(jì)算求出該公司有幾種租車方案?請(qǐng)你設(shè)計(jì)出來(lái),并求出最低的租車費(fèi)用.

(3)該商業(yè)公司生產(chǎn)的此時(shí)令商品每件成本為15元,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn),這種商品在未來(lái)20天內(nèi)的日銷量m(件)與時(shí)間t(天)的函數(shù)關(guān)系:m=﹣2t+100;該商品每天的價(jià)格y(元/件)與時(shí)間t(天)的函數(shù)關(guān)系為:y=t+20(1t20),其中t取整數(shù);在實(shí)際銷售的前20天中,該公司決定每銷售一件商品就捐贈(zèng)a元利潤(rùn)(a4)給希望工程.公司通過(guò)銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈(zèng)后的日銷售利潤(rùn)時(shí)間t(天)的增大而增大(含20天的日銷售利潤(rùn)和第19天的日銷售利潤(rùn)相等的情況),求a的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形的中,,,動(dòng)點(diǎn)、分別以、的速度從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)向點(diǎn)移動(dòng).

(1)若點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止,點(diǎn)、分別從點(diǎn)同時(shí)出發(fā),問(wèn)經(jīng)過(guò)時(shí)、兩點(diǎn)之間的距離是多少

(2)若點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止,點(diǎn)隨之停止移動(dòng),點(diǎn)、分別從點(diǎn)同時(shí)出發(fā),問(wèn)經(jīng)過(guò)多長(zhǎng)時(shí)間、兩點(diǎn)之間的距離是?

(3)若點(diǎn)沿著移動(dòng),點(diǎn)、分別從點(diǎn)、同時(shí)出發(fā),點(diǎn)從點(diǎn)移動(dòng)到點(diǎn)停止時(shí),點(diǎn)隨之也停止移動(dòng),試探求經(jīng)過(guò)多長(zhǎng)時(shí)間的面積為2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠BAD=∠CAE90°ABAD,AEAC,AFCF于點(diǎn)F

1)求證:ABC≌△ADE;

2)已知BF的長(zhǎng)為2DE的長(zhǎng)為6,求CD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,ABAC,點(diǎn)DAC上,過(guò)點(diǎn)DDFBC于點(diǎn)F,且BDBCAD,則∠CDF的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司生產(chǎn)兩種機(jī)械設(shè)備,每臺(tái)種設(shè)備的成本是種設(shè)備的1.5倍,公司若投入16萬(wàn)元生產(chǎn)種設(shè)備,36萬(wàn)元生產(chǎn)種設(shè)備,則可生產(chǎn)兩種設(shè)備共10臺(tái),請(qǐng)解答下列問(wèn)題:

1兩種設(shè)備每臺(tái)的成本分別是多少萬(wàn)元?

2、兩種設(shè)備每臺(tái)的售價(jià)分別是6萬(wàn)元、10萬(wàn)元,且該公司生產(chǎn)兩種設(shè)備各30臺(tái),現(xiàn)公司決定對(duì)兩種設(shè)備優(yōu)惠出售,種設(shè)備按原來(lái)售價(jià)8折出售,B種設(shè)備在原來(lái)售價(jià)的基礎(chǔ)上優(yōu)惠10%,若設(shè)備全部售出,該公司一共獲利多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)的圖象經(jīng)過(guò)點(diǎn),且與二次函數(shù)的圖象相交于、兩點(diǎn).

(1)求這兩個(gè)函數(shù)的表達(dá)式及點(diǎn)的坐標(biāo);

(2)在同一坐標(biāo)系中畫(huà)出這兩個(gè)函數(shù)的圖象,并根據(jù)圖象回答:當(dāng)取何值時(shí),一次函數(shù)的函數(shù)值小于二次函數(shù)的函數(shù)值;

(3)求△BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩輛汽車沿同一路線趕赴距出發(fā)地480千米的目的地,乙車比甲車晚出發(fā)2小時(shí)(從甲車出發(fā)時(shí)開(kāi)始計(jì)時(shí)),圖中折線OABC、線段DE分別表示甲、乙兩車所行路程y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系對(duì)應(yīng)的圖像線段AB表示甲出發(fā)不足2小時(shí)因故停車檢修),請(qǐng)根據(jù)圖像所提供的信息,解決如下問(wèn)題:

(1)求乙車所行路程y與時(shí)間x的函數(shù)關(guān)系式;

(2)求兩車在途中第二次相遇時(shí),它們距出發(fā)地的路程;

(3)乙車出發(fā)多長(zhǎng)時(shí)間,兩車在途中第一次相遇?(寫(xiě)出解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC 中,D BC 邊的中點(diǎn),E、F 分別在 AD 及其延長(zhǎng)線上,CEBF,連接BE、CF.

(1)求證:BDF ≌△CDE;

(2)若 DE =BC,試判斷四邊形 BFCE 是怎樣的四邊形,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案