如圖,數(shù)軸上與1,對(duì)應(yīng)的點(diǎn)分別為A,B,點(diǎn)B關(guān)于點(diǎn)A的對(duì)稱(chēng)點(diǎn)為C,設(shè)點(diǎn)C表示的數(shù)為x,則||+=   
【答案】分析:首先根據(jù)已知條件可以確定線段AB的長(zhǎng)度,然后根據(jù)對(duì)稱(chēng)的性質(zhì)即可確定x的值,代入所求代數(shù)式計(jì)算即可解決問(wèn)題.
解答:解:∵A,B兩點(diǎn)的分別為1,,
∴C點(diǎn)所表示的數(shù)是x=1-(-1)=2-
根據(jù)絕對(duì)值的意義進(jìn)行化簡(jiǎn):
原式=-(2-)+
=2-2+,
=2-2+2+
=3
故答案為:3
點(diǎn)評(píng):此題主要考查了實(shí)數(shù)與數(shù)軸之間的對(duì)應(yīng)關(guān)系,解題時(shí)要求能夠熟練計(jì)算數(shù)軸上兩點(diǎn)間的距離;根據(jù)絕對(duì)值的性質(zhì)進(jìn)行化簡(jiǎn)去掉絕對(duì)值及掌握分母有理化的方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,用粗線在數(shù)軸上表示了一個(gè)“范圍”,這個(gè)“范圍”包含所有大于1小于2的實(shí)數(shù)(數(shù)軸上1與2這兩個(gè)數(shù)的點(diǎn)空心,表示這個(gè)范圍不包含數(shù)1和2).精英家教網(wǎng)
請(qǐng)你在數(shù)軸上表示出一范圍,使得這個(gè)范圍:
(1)包含所有大于-3小于0的有理數(shù)[畫(huà)在數(shù)軸上];
精英家教網(wǎng)
(2)包含-
2
、π這兩個(gè)數(shù),且只含有5個(gè)整數(shù)[畫(huà)在數(shù)軸上];
精英家教網(wǎng)
(3)同時(shí)滿足以下三個(gè)條件:[畫(huà)在數(shù)軸上]
精英家教網(wǎng)
①至少有100對(duì)互為相反數(shù)和100對(duì)互為倒數(shù);
②有最小的正整數(shù);
③這個(gè)范圍內(nèi)最大的數(shù)與最小的數(shù)表示的點(diǎn)的距離大于3但小于4.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

28、閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離;即|x|=|x-0|,也就是說(shuō),|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;
這個(gè)結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對(duì)應(yīng)點(diǎn)之間的距離;
在解題中,我們會(huì)常常運(yùn)用絕對(duì)值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對(duì)值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對(duì)應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊.若x對(duì)應(yīng)點(diǎn)在1的右邊,如圖可以看出x=2;同理,若x對(duì)應(yīng)點(diǎn)在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問(wèn)題:
(1)方程|x+3|=4的解為
1或-7

(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對(duì)任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:四川省中考真題 題型:解答題

閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離;即|x|=|x-0|,也就是說(shuō),|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;
這個(gè)結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對(duì)應(yīng)點(diǎn)之間的距離;
在解題中,我們會(huì)常常運(yùn)用絕對(duì)值的幾何意義:
例1:解方程|x|=2,容易得出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2,如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為-1,3,
則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5,由絕對(duì)值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對(duì)應(yīng)的x的值,在數(shù)軸上,1和-2的距離為3,滿足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊,若x對(duì)應(yīng)點(diǎn)在1的右邊,如圖可以看出x=2;同理,若x對(duì)應(yīng)點(diǎn)在-2的左邊,可得x=-3,故原方程的解是x=2或x=-3。
參考閱讀材料,解答下列問(wèn)題:

(1)方程|x+3|=4的解為_(kāi)___;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對(duì)任意的x都成立,求a的取值范圍。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年四川省樂(lè)山市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2008•樂(lè)山)閱讀下列材料:
我們知道|x|的幾何意義是在數(shù)軸上數(shù)x對(duì)應(yīng)的點(diǎn)與原點(diǎn)的距離;即|x|=|x-0|,也就是說(shuō),|x|表示在數(shù)軸上數(shù)x與數(shù)0對(duì)應(yīng)點(diǎn)之間的距離;

這個(gè)結(jié)論可以推廣為|x1-x2|表示在數(shù)軸上數(shù)x1,x2對(duì)應(yīng)點(diǎn)之間的距離;
在解題中,我們會(huì)常常運(yùn)用絕對(duì)值的幾何意義:
例1:解方程|x|=2.容易得出,在數(shù)軸上與原點(diǎn)距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為±2,即該方程的x=±2;
例2:解不等式|x-1|>2.如圖,在數(shù)軸上找出|x-1|=2的解,即到1的距離為2的點(diǎn)對(duì)應(yīng)的數(shù)為-1,3,則|x-1|>2的解為x<-1或x>3;
例3:解方程|x-1|+|x+2|=5.由絕對(duì)值的幾何意義知,該方程表示求在數(shù)軸上與1和-2的距離之和為5的點(diǎn)對(duì)應(yīng)的x的值.在數(shù)軸上,1和-2的距離為3,滿足方程的x對(duì)應(yīng)點(diǎn)在1的右邊或-2的左邊.若x對(duì)應(yīng)點(diǎn)在1的右邊,如圖可以看出x=2;同理,若x對(duì)應(yīng)點(diǎn)在-2的左邊,可得x=-3.故原方程的解是x=2或x=-3.
參考閱讀材料,解答下列問(wèn)題:
(1)方程|x+3|=4的解為_(kāi)_____;
(2)解不等式|x-3|+|x+4|≥9;
(3)若|x-3|-|x+4|≤a對(duì)任意的x都成立,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

陳老師從拉面的制作受到啟發(fā), 設(shè)計(jì)了一個(gè)數(shù)學(xué)問(wèn)題: 如圖, 在數(shù)軸上截取從原點(diǎn)到1的對(duì)應(yīng)點(diǎn)的線段AB, 對(duì)折后(點(diǎn)AB重合)再均勻地拉成1個(gè)單位長(zhǎng)度的線段, 這一過(guò)程稱(chēng)為一次操作(如在第一次操作后,原線段AB上的均變成變成1,等). 那么在線段AB上(除A,B)的點(diǎn)中, 在第n次操作后, 恰好被拉到與1重合的點(diǎn)所對(duì)應(yīng)的數(shù)為_(kāi)______.

                                                                    

查看答案和解析>>

同步練習(xí)冊(cè)答案