【題目】如圖,在等腰Rt△ABC中,斜邊AB=8,點P在以AC為直徑的半圓上,M為PB的中點,當(dāng)點P沿半圓從點A運動至點C時,點M運動的路徑長是(
A.2 π
B. π
C.2π
D.2

【答案】B
【解析】解:如圖,連接PA、PC,取AB、BC的中點E、F,連接EF、EM、FM.
∵AC是直徑,
∴∠APC=90°,
∵BE=EA,BM=MP,
∴EM∥PA,同理FM∥PC,
∴∠BME=∠BPA,∠BMF=∠BPC,
∴∠BME+∠BMF=∠BPA+∠BPC=90°,
∴∠EMF=90°,
∴點M的軌跡是 ,(EF為直徑的半圓,圖中紅線部分)
∵BC=AC,∠ACB=90°,AB=8,
∴AC=4 ,EF= AC=2 ,
的長=π = π.
故選B.
【考點精析】認真審題,首先需要了解等腰直角三角形(等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個底角相等且等于45°).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,P、Q分別是BC、AC上的點,作PR⊥AB,PS⊥AC,垂足分別為R、S,若AQ=PQ,PR=PS,則結(jié)論:①PA平分∠RPS;②AS=AR;③QP∥AR;④△BRP≌△CSP.其中正確的有( )

A. 4個 B. 3個 C. 2個 D. 1個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=x2的圖象向右平移2個單位得函數(shù)y1的圖象,將y與y1合起來構(gòu)成新圖象,直線y=m被新圖象依次截得三段的長相等,則

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,若的角平分線,點和點分別在上,且,垂足為,,垂足為(如圖),則可以得到以下兩個結(jié)論:

;

那么在中,仍然有條件的角平分線,點和點,分別在,請?zhí)骄恳韵聝蓚問題:

(如圖),則是否仍相等?若仍相等,請證明;否則請舉出反例.

,則是否成立?(只寫出結(jié)論,不證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解射擊運動員小杰的集訓(xùn)效果,教練統(tǒng)計了他集訓(xùn)前后的兩次測試成績(每次測試射擊10次),制作了如圖所示的條形統(tǒng)計圖.

1)集訓(xùn)前小杰射擊成績的眾數(shù)為 ;

2)分別計算小杰集訓(xùn)前后射擊的平均成績;

3)請用一句話評價小杰這次集訓(xùn)的效果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線y=m是平行于x軸的直線,將拋物線y=﹣ x2﹣4x在直線y=m上側(cè)的部分沿直線y=m翻折,翻折后的部分與沒有翻折的部分組成新的函數(shù)圖象,若新的函數(shù)圖象剛好與直線y=﹣x有3個交點,則滿足條件的m的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一平面直角坐標系中,函數(shù)y=ax+b與y=ax2﹣bx的圖象可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC和△DCE均是等邊三角形,點B、C、E在同一條直線上,AE與BD交于點O,AE與CD交于點G,AC與BD交于點F,連接OC、FG,則下列結(jié)論:①AE=BD;②AO=BF;③FG∥BE;④∠BOC=∠EOC;⑤BO=OC+AO,其中正確的結(jié)論有( )個.
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】11世紀的一位阿拉伯?dāng)?shù)學(xué)家曾提出一個“鳥兒捉魚”問題:小溪邊長著兩棵棕櫚樹,恰好隔岸相望一棵棕櫚樹高是30肘尺(肘尺是古代的長度單位),另外一棵高20肘尺;兩棵棕櫚樹的樹干間的距離是50肘尺.每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見棕櫚樹間的水面上游出一條魚,它們立刻以相同的速度飛去抓魚,并且同時到達目標.:這條魚出現(xiàn)的地方離比較高的棕櫚樹的樹根有多遠?

查看答案和解析>>

同步練習(xí)冊答案