【題目】在數(shù)學(xué)活動(dòng)課上,九年級(jí)(1)班數(shù)學(xué)興趣小組的同學(xué)們測(cè)量校園內(nèi)一棵大樹(如圖)的高度,設(shè)計(jì)的方案及測(cè)量數(shù)據(jù)如下:

(1)在大樹前的平地上選擇一點(diǎn)A,測(cè)得由點(diǎn)A看大樹頂端C的仰角為35°;

(2)在點(diǎn)A和大樹之間選擇一點(diǎn)B(A,B,D在同一直線上),測(cè)得由點(diǎn)B看大樹頂端C的仰角恰好為45°;

(3)量出A,B兩點(diǎn)間的距離為4.5米.

請(qǐng)你根據(jù)以上數(shù)據(jù)求出大樹CD的高度.(精確到0.1米)(可能用到的參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)

【答案】10.5米

【解析】

試題分析:首先分析圖形:本題涉及到兩個(gè)直角三角形DBC、ADC,應(yīng)利用其公共邊CD構(gòu)造等量關(guān)系,借助AB=AD﹣DB=4.5構(gòu)造方程關(guān)系式,進(jìn)而可求出答案.

解:設(shè)CD=x米;

∵∠DBC=45°,

DB=CD=x,AD=x+4.5;

在RtACD中,tanA=,

tan35°=

解得:x=10.5;

所以大樹的高為10.5米.

解法2:在RtACD中,tanA=,AD=;

在RtBCD中,tanCBD=,BD=

而AD﹣BD=4.5,

=4.5,

解得:CD=10.5;

所以大樹的高為10.5米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一幅美麗的圖案,在其頂點(diǎn)處由四個(gè)正多邊形鑲嵌而成,其中三個(gè)分別為正三角形、正四邊形、正六邊形,則另一個(gè)為(

A. 正三角形 B. 正四邊形 C. 正五邊形 D. 正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算

1)(﹣6++8+4﹣2

2)(﹣7×﹣5﹣90÷﹣15

3)(+×﹣36

4×÷

5﹣24+4﹣92﹣5×﹣16

6)用簡(jiǎn)便方法計(jì)算:(﹣370×+0.25×24.5﹣5×﹣25%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小慧兩位同學(xué)在數(shù)學(xué)活動(dòng)課中,把長(zhǎng)為30cm,寬為10cm的長(zhǎng)方形白紙條粘合起來,小明按如圖甲所示的方法粘合起來得到長(zhǎng)方形ABCD,粘合部分的長(zhǎng)度為6cm,小慧按如圖乙所示的方法粘合起來得到長(zhǎng)方形A1B1C1D1,黏合部分的長(zhǎng)度為4cm.若長(zhǎng)為30cm,寬為10cm的長(zhǎng)方形白紙條共有100張,則小明應(yīng)分配到 張長(zhǎng)方形白紙條,才能使小明和小慧按各自要求黏合起來的長(zhǎng)方形面積相等(要求100張長(zhǎng)方形白紙條全部用完).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為給同學(xué)們創(chuàng)造更好的讀書條件,學(xué)校準(zhǔn)備新建一個(gè)長(zhǎng)度為L的度數(shù)長(zhǎng)廊,并準(zhǔn)備用若干塊帶有花紋和沒有花紋的兩種規(guī)格、大小相同的正方形地面磚搭配在一起,按如圖所示的規(guī)律拼成圖案鋪滿長(zhǎng)廊,已知每個(gè)小正方形地面磚的邊長(zhǎng)均為0.6m

1)按圖示規(guī)律,第一圖案的長(zhǎng)度L1= m;第二個(gè)圖案的長(zhǎng)度L2= m

2)請(qǐng)用代數(shù)式表示帶有花紋的地面磚塊數(shù)n與走廊的長(zhǎng)度Ln之間的關(guān)系.

3)當(dāng)走廊的長(zhǎng)度L36.6m時(shí),請(qǐng)計(jì)算出所需帶有花紋圖案的瓷磚的塊數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖.從下列四個(gè)條件:①BC=B′C,②AC=A′C,③A′CA=B′CB,④AB=A′B′中,任取三個(gè)為條件,余下的一個(gè)為結(jié)論,則最多可以構(gòu)成正確的結(jié)論的個(gè)數(shù)是( )

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+4在坐標(biāo)系中的位置如圖所示,它與x,y軸的交點(diǎn)分別為A(﹣1,0),B,P是其對(duì)稱軸x=1上的動(dòng)點(diǎn),根據(jù)圖中提供的信息,得出以下結(jié)論:

①2a+b=0,

②x=3是方程ax2+bx+4=0的一個(gè)根,

PAB周長(zhǎng)的最小值是5+,

④9a+4<3b.

其中正確的是( )

A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知等腰三角形的兩邊長(zhǎng)分別為36,則它的周長(zhǎng)等于_______。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)O為直線AB上一點(diǎn),過點(diǎn)O作射線OC,使BOC=120°.將一直角三角板的直角頂點(diǎn)放在點(diǎn)O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖1中的三角板繞點(diǎn)O按每秒10°的速度沿逆時(shí)針方向旋轉(zhuǎn)一周.在旋轉(zhuǎn)的過程中,假如第t秒時(shí),OA、OC、ON三條射線構(gòu)成相等的角,求此時(shí)t的值為多少?

(2)將圖1中的三角板繞點(diǎn)O順時(shí)針旋轉(zhuǎn)圖2,使ON在AOC的內(nèi)部,請(qǐng)?zhí)骄浚?/span>AOMNOC之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案