【題目】如圖,將一塊斜邊長為12cm,∠B=60°的直角三角板ABC,繞點C沿逆時針方向旋轉90°至△A′B′C′的位置,再沿CB向右平移,使點B′剛好落在斜邊AB上,那么此三角板向右平移的距離是cm.
【答案】( )
【解析】解:如圖,
BC=ABcos60°=6.
由平移的性質知:
∠WQS=∠ACB=90°,WQ=BC=6,
∴BQ=WQcot60°=2 .
∴QC=BC﹣BQ=6﹣2 .
【考點精析】解答此題的關鍵在于理解平移的性質的相關知識,掌握①經(jīng)過平移之后的圖形與原來的圖形的對應線段平行(或在同一直線上)且相等,對應角相等,圖形的形狀與大小都沒有發(fā)生變化;②經(jīng)過平移后,對應點所連的線段平行(或在同一直線上)且相等,以及對解直角三角形的理解,了解解直角三角形的依據(jù):①邊的關系a2+b2=c2;②角的關系:A+B=90°;③邊角關系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
科目:初中數(shù)學 來源: 題型:
【題目】小明在光明廣場(點O)繪制了市內幾所學校相對于廣場的位置簡圖(圖11中1 cm表示5 km).東方紅中學在廣場的正南方向,測得OA=1.7 cm,OB=2 cm,OC=2 cm,OD=1.4 cm,∠AOC=123°18′,∠AOB=68°24′,∠AOD=88°28′,如何確定每個學校的具體位置?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+c與x軸交于A、B兩點,頂點為C,點P在拋物線上,且位于x軸下方.
(1)若P(1,﹣3)、B(4,0),
①求該拋物線的解析式;
②若D是拋物線上一點,滿足∠DPO=∠POB,求點D的坐標;
(2)如圖2,在(1)中的拋物線解析式不變的條件下,已知直線PA、PB與y軸分別交于E、F兩點,點點P運動時,OE+OF是否為定值?若是,試求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個由5張紙片拼成的平行四邊形,相鄰紙片之間互不重疊也無縫隙,其中兩張等腰直角三角形紙片的面積都為S1 , 另兩張直角三角形紙片的面積都為S2 , 中間一張正方形紙片的面積為S3 , 則這個平行四邊形的面積一定可以表示為( )
A.4S1
B.4S2
C.4S2+S3
D.3S1+4S3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形ABCD各頂點分別為A(-2,2),B(-2,-1),C(3,-1),D(3,2),如果長方A'B'C'D'先向右平移1個單位長度,再向下平移2個單位長度,恰能與長方形ABCD完全重合.
(1)求長方形A'B'C'D'各頂點的坐標;
(2)如果線段AB與線段B'C'交于點E,線段AD與線段C'D'交于點F,求點E,F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在方格紙中(小正方形的邊長為1),△ABC的三個頂點均為格點,將△ABC沿x軸向左平移5個單位長度,根據(jù)所給的直角坐標系(O是坐標原點),解答下列問題:
(1)畫出平移后的△A′B′C′,并直接寫出點A′、B′、C′的坐標;
(2)求出在整個平移過程中,△ABC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知n邊形的內角和θ=(n-2)×180°.
(1)甲同學說,θ能取360°;而乙同學說,θ也能取630°.甲、乙的說法對嗎?若對,求出邊數(shù)n.若不對,說明理由;
(2)若n邊形變?yōu)?/span>(n+x)邊形,發(fā)現(xiàn)內角和增加了360°,用列方程的方法確定x.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,射線CB∥OA,∠C=∠OAB=100°,E、F在CB上,且滿足∠FOB=∠AOB,OE平分∠COF。
(1)求∠EOB的度數(shù);
(2)若平行移動AB,那么∠OBC∶∠OFC的值是否隨之變化?若變化,找出變化規(guī)律;若不變,求出這個比值;
(3)在平行移動AB的過程中,是否存在某種情況,使∠OEC=∠OBA?若存在,求出其度數(shù);若不存在,說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com