【題目】如圖所示,有一個只允許單向通過的窄道口,通常情況下,每分鐘可以通過9人.一天王老師到達道口時,發(fā)現由于擁擠,每分鐘只能有3人通過道口,此時,自己前面還有36人等待通過(假定先到達的先過,王老師過道口的時間忽略不計),通過道口后,還需7分鐘到達學校.
(1)此時,若繞道而行,要15分鐘才能到達學校,從節(jié)省時間考慮,王老師應選擇繞道去學校,還是選擇通過擁擠的道口去學校?
(2)若在王老師等人的維持下,幾分鐘后秩序恢復正常(維持秩序期間,每分鐘仍有3人通過道口),結果王老師比在擁擠的情況下提前6分鐘通過道口,問維持秩序的時間是多長?
科目:初中數學 來源: 題型:
【題目】甲騎自行車、乙騎摩托車沿相同路線由A地到B地,行駛過程中路程與時間的函數關系的圖象如圖. 根據圖象解決下列問題:
(1) 誰先出發(fā)?先出發(fā)多少時間?誰先到達終點?先到多少時間?
(2) 分別求出甲、乙兩人的行駛速度;
(3) 在什么時間段內,兩人均行駛在途中(不包括起點和終點)?在這一時間段內,請你根據下列情形,分別列出關于行駛時間x的方程或不等式(不化簡,也不求解):① 甲在乙的前面;② 甲與乙相遇;③ 甲在乙后面.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線l1與x軸交于點A,B,與y軸交于點C,l1的解析式為y= x2﹣2,若將拋物線l1平移,使平移后的拋物線l2經過點A,對稱軸為直線x=﹣6,拋物線l2與x軸的另一個交點是E,頂點是D,連結OD,AD,ED.
(1)求拋物線l2的解析式;
(2)求證:△ADE∽△DOE;
(3)半徑為1的⊙P的圓心P沿著直線x=﹣6從點D運動到F(﹣6,0),運動速度為1單位/秒,運動時間為t秒,⊙P繞著點C順時針旋轉90°得⊙P1 , 隨著⊙P的運動,求P1的運動路徑長以及當⊙P1與y軸相切的時候t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+b與x軸交于點A、B,且A點的坐標為(1,0),與y軸交于點C(0,1).
(1)求拋物線的解析式,并求出點B坐標;
(2)過點B作BD∥CA交拋物線于點D,連接BC、CA、AD,求四邊形ABCD的周長;(結果保留根號)
(3)在x軸上方的拋物線上是否存在點P,過點P作PE垂直于x軸,垂足為點E,使以B、P、E為頂點的三角形與△CBD相似?若存在請求出P點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB>AC,點D、E分別是邊AB、AC的中點,點F在BC邊上,連接DE、DF、EF,則添加下列哪一個條件后,仍無法判斷△FCE與△EDF全等( )
A. ∠A=∠DFE B. BF=CF C. DF∥AC D. ∠C=∠EDF
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:在數軸上A點表示數a,B點示數b,C點表示數c,b是最小的正整數,且a、c滿足|a+2|+(c-7)2=0.
(1)a=______,b=______,c=______;
(2)若將數軸折疊,使得A點與C點重合,則點B與數______表示的點重合;
(3)點A、B、C開始在數軸上運動,若點A以每秒1個單位長度的速度向左運動,同時,點B和點C分別以每秒2個單位長度和4個單位長度的速度向右運動,假設t秒鐘過后,若點A與點B之間的距離表示為AB,點A與點C之間的距離表示為AC,點B與點C之間的距離表示為BC.則AB=______,AC=______,BC=______.(用含t的代數式表示).
(4)直接寫出點B為AC中點時的t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】4月26日,2015黃河口(東營)國際馬拉松比賽拉開帷幕,中央電視臺體育頻道用直升機航拍技術全程直播.如圖,在直升機的鏡頭下,觀測馬拉松景觀大道A處的俯角為30°,B處的俯角為45°.如果此時直升機鏡頭C處的高度CD為200米,點A、D、B在同一直線上,則AB兩點的距離是米.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com