【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結(jié)論:
①ac<0 ②2a+b=0 ③4a+2b+c>0 ④對任意實數(shù)x均有ax2+bx≥a+b
正確的結(jié)論序號為: .
【答案】①②④
【解析】解:∵拋物線開口向上,
∴a>0,
∵拋物線與y軸的交點在x軸的下方,
∴c<0,
∴ac<0,故①正確.
∵對稱軸x=﹣ =1,
∴2a=﹣b,
∴b+2a=0,故②正確;
根據(jù)圖象知道
當(dāng)x=2時,y=4a+2b+c<0,故③錯誤,
∵當(dāng)x=1時,y最小=a+b+c,
∴ax2+bx+c≥a+b+c,
∴ax2+bx≥a+b,故④正確.
∴正確的結(jié)論序號為:①②④,
所以答案是:①②④.
【考點精析】認(rèn)真審題,首先需要了解二次函數(shù)圖象以及系數(shù)a、b、c的關(guān)系(二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關(guān):對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標(biāo):(0,c)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的圖象如圖所示,頂點為(4,6),則下列說法錯誤的是( )
A.b2>4ac
B.ax2+bx+c≤6
C.若點(2,m)(5,n)在拋物線上,則m>n
D.8a+b=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點E,F(xiàn),G,H是矩形ABCD各邊的中點,AB=6,BC=8,動點M從點E出發(fā),沿E→F→G→H→E勻速運動,設(shè)點M運動的路程x,點M到矩形的某一個頂點的距離為y,如果表示y關(guān)于x函數(shù)關(guān)系的圖象如圖2所示,那么這個頂點是矩形的( )
A.點A
B.點B
C.點C
D.點D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對于點P(x,y),如果點Q(x,y′)的縱坐標(biāo)滿足y′= ,那么稱點Q為點P的“關(guān)聯(lián)點”.
(1)請直接寫出點(3,5)的“關(guān)聯(lián)點”的坐標(biāo);
(2)如果點P在函數(shù)y=x﹣2的圖象上,其“關(guān)聯(lián)點”Q與點P重合,求點P的坐標(biāo);
(3)如果點M(m,n)的“關(guān)聯(lián)點”N在函數(shù)y=2x2的圖象上,當(dāng)0≤m≤2時,求線段MN的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC三個頂點的坐標(biāo)分別為A(1,1),B(4,2),C(3,4)
.
(1)請畫出△ABC關(guān)于原點對稱的△A2B2C2;并寫出各點的坐標(biāo).
(2)在x軸上求作一點P,使△PAB的周小最小,請畫出△PAB,并直接寫出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店以固定進(jìn)價一次性購進(jìn)一種商品,3月份按一定售價銷售,銷售額為2400元,為擴大銷量,減少庫存,4月份在3月份售價基礎(chǔ)上打9折銷售,結(jié)果銷售量增加30件,銷售額增加840元.
(1)求該商店3月份這種商品的售價是多少元?
(2)如果該商店3月份銷售這種商品的利潤為900元,那么該商店4月份銷售這種商品的利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中點,以C為圓心,4cm長為半徑作圓,則A,B,C,D四點中,在圓內(nèi)的有( )
A.4個
B.3個
C.2個
D.1個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀資料:我們把頂點在圓上,并且一邊和圓相交、另一邊和圓相切的角叫做弦切角,如圖1∠ABC所示.同學(xué)們研究發(fā)現(xiàn):P為圓上任意一點,當(dāng)弦AC經(jīng)過圓心O時,且AB切⊙O于點A,此時弦切角∠CAB=∠P(圖2)
證明:∵AB切⊙O于點A,∴∠CAB=90°,又∵AC是直徑,∴∠P=90°∴∠CAB=∠P
問題拓展:若AC不經(jīng)過圓心O(如圖3),該結(jié)論:弦切角∠CAB=∠P還成立嗎?請說明理由.
知識運用:如圖4,AD是△ABC中∠BAC的平分線,經(jīng)過點A的⊙O與BC切于點D,與AB、AC分別相交于E、F.求證:EF∥BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,則下列結(jié)論中不正確的是( )
A. 當(dāng)AB=BC時,四邊形ABCD是菱形
B. 當(dāng)AC⊥BD時,四邊形ABCD是菱形
C. 當(dāng)∠ABC=90°時,四邊形ABCD是矩形
D. 當(dāng)AC=BD時,四邊形ABCD是正方形
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com