已知直線l1:y=x+3與l2:y=-2x交于點(diǎn)B,直線l1與x軸交于點(diǎn)A,動(dòng)點(diǎn)P在線段OA上移動(dòng)(不與點(diǎn)A、O重合)
(1)求點(diǎn)B的坐標(biāo);
(2)過點(diǎn)P作直線l與x軸垂直,設(shè)P點(diǎn)的橫坐標(biāo)為x,△ABO中位于直線l左側(cè)部分的面積為S,求S與x之間的函數(shù)關(guān)系式.
分析:(1)將直線l1:y=x+3與l2:y=-2x聯(lián)立,即可解得點(diǎn)B的坐標(biāo);
(2)先求出l與l1、l2的交點(diǎn),然后根據(jù)x取不同的取值范圍分別寫出S與x之間的函數(shù)關(guān)系式即可.
解答:精英家教網(wǎng)解:(1)由
y=x+3
y=-2x

解得
x=-1
y=2

∴點(diǎn)B的坐標(biāo)為(-1,2)(2分)

(2)設(shè)點(diǎn)P的坐標(biāo)為(x,0),(-3<x<0)
∴直線l與直線l1交于點(diǎn)C(x,x+3),與直線l2交于點(diǎn)D(x,-2x)
當(dāng)-3<x≤-1時(shí),S=
1
2
AP•PC=
1
2
(x+3)2
(3分)
當(dāng)-1<x<0時(shí),S=S△ABO-S△PDO=
1
2
×3×2-
1
2
(-x)•(-2x)=3-x2
(4分)
S=
1
2
(x+3)2      -3<x≤-1
3-x2           -1<x<0
(5分)
點(diǎn)評(píng):本題主要考查了一次函數(shù)的綜合題,解答要注意數(shù)形結(jié)合思想和分類討論等數(shù)學(xué)思想的運(yùn)用,是各地中考的熱點(diǎn),同學(xué)們要加強(qiáng)訓(xùn)練,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1:y=2x+3,直線l2:y=-x+5,直線l1、l2分別交x軸于B、C兩點(diǎn),l1、l2相交于點(diǎn)A.
(1)求A、B、C三點(diǎn)坐標(biāo);
(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•濟(jì)南)已知直線l1∥l2∥l3∥l4,相鄰的兩條平行直線間的距離均為h,矩形ABCD的四個(gè)頂點(diǎn)分別在這四條直線上,放置方式如圖所示,AB=4,BC=6,則tanα的值等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線l1:y1=k1x+b1和直線l2:y2=k2x+b2相交于點(diǎn)(1,1).請(qǐng)你根據(jù)圖象所提供的信息回答下列問題:
(1)分別求出直線l1、l2的函數(shù)解析式;
(2)寫出一個(gè)二元一次方程組,使它滿足圖象中的條件;
(3)根據(jù)圖象直接寫出當(dāng)0≤y1≤y2時(shí)x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線l1,l2和△ABC,且l1⊥l2于點(diǎn)O.點(diǎn)A在l1上,點(diǎn)B、點(diǎn)C在l2上.
(1)作△A1B1C1,使△A1B1C1與△ABC關(guān)于直線l1對(duì)稱.
(2)作△A2B2C2,使△A2B2C2與△A1B1C1關(guān)于直線l2對(duì)稱.
(3)△ABC與△A2B2C2有什么樣的關(guān)系?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀下面的材料:
在平面幾何中,我們學(xué)過兩條直線平行的定義.下面就兩個(gè)一次函數(shù)的圖象所確定的兩條直線,給出它們平行的定義:設(shè)一次函數(shù)y=k1x+b1(k1≠0)的圖象為直線l1,一次函數(shù)y=k2x+b2(k2≠0)的圖象為直線l2,若k1=k2,且b1≠b2,我們就稱直線l1與直線l2互相平行.
解答下面的問題:
(1)已知一次函數(shù)y=-2x的圖象為直線l1,求過點(diǎn)P(1,4)且與已知直線l1平行的直線l2的函數(shù)表達(dá)式,并在坐標(biāo)系中畫出直線l1和l2的圖象;
(2)設(shè)直線l2分別與y軸、x軸交于點(diǎn)A、B,過坐標(biāo)原點(diǎn)O作OC⊥AB,垂足為C,求l1和l2兩平行線之間的距離OC的長;
(3)若Q為OA上一動(dòng)點(diǎn),求QP+QB的最小值,并求取得最小值時(shí)Q點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案