【題目】正方形ABCD與正五邊形EFGHM的邊長相等,初始如圖所示,將正方形繞點F順時針旋轉(zhuǎn)使得BC與FG重合,再將正方形繞點G順時針旋轉(zhuǎn)使得CD與GH重合…按這樣的方式將正方形依次繞點H、M、E旋轉(zhuǎn)后,正方形中與EF重合的是( )

A.AB
B.BC
C.CD
D.DA

【答案】B
【解析】解:∵正方形ABCD與正五邊形EFGHM的邊長相等,
∴從BC與FG重合開始,正方形ABCD的各邊依次與正五邊形EFGHM的各邊重合,
而與EF重合是正方形的邊與正五邊形的邊第五次重合,
∴正方形中與EF重合的是BC.
故選B.
【考點精析】解答此題的關鍵在于理解旋轉(zhuǎn)的性質(zhì)的相關知識,掌握①旋轉(zhuǎn)后對應的線段長短不變,旋轉(zhuǎn)角度大小不變;②旋轉(zhuǎn)后對應的點到旋轉(zhuǎn)到旋轉(zhuǎn)中心的距離不變;③旋轉(zhuǎn)后物體或圖形不變,只是位置變了.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了慶祝即將到來的五四青年節(jié),某校舉行了書法比賽,賽后隨機抽查部分參賽同學的成績,并制作成圖表如下:

分數(shù)段

頻數(shù)

頻率

60≤x<70

30

0.15

70≤x<80

m

0.45

80≤x<90

60

n

90≤x≤100

20

0.1

請根據(jù)以上圖表提供的信息,解答下列問題:

(1)這次隨機抽查了   名學生;表中的數(shù)m=   ,n=   ;

(2)請在圖中補全頻數(shù)分布直方圖;

(3)若繪制扇形統(tǒng)計圖,分數(shù)段60≤x<70所對應扇形的圓心角的度數(shù)是   ;

(4)全校共有600名學生參加比賽,估計該校成績80≤x<100范圍內(nèi)的學生有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)3﹣(+2)﹣(﹣2)﹣(﹣0.75);

(2)(+)×(﹣78);

(3)(﹣)÷(1);

(4)﹣32﹣2÷×[2﹣(﹣2]﹣(﹣2)3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤被平均分成五個扇形,五個扇形內(nèi)部分別標有數(shù)字.﹣2、3、﹣4、5.若將轉(zhuǎn)盤轉(zhuǎn)動兩次,每一次停止轉(zhuǎn)動后,指針指向的扇形內(nèi)的數(shù)字分別記為m,n(當指針指在邊界線時視為無效,重轉(zhuǎn)),從而確定一個點的坐標為A(m,n).請用列表或者畫樹狀圖的方法求出所有可能得到的點A的坐標,并求出點A在第一象限內(nèi)的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場計劃撥款9萬元從廠家購進50臺電視機,已知該廠家生產(chǎn)三種不同型號的電視機,出廠價分別為:甲種每臺1500元,乙種每臺2100元,丙種每臺2500元,若商場同時購進其中兩種不同型號電視機共50臺,用去9萬元,請你研究一下商場的進貨方案.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙每個小方格是邊長為1個單位長度的正方形,在平面直角坐標系中,點A(1,0),B(5,0),C(a,b)D(1,4).

(1)描出A、B、C、D四點的位置.如圖,則a=  ;b=  ;

(2)四邊形ABCD的面積是  ;(直接寫出結(jié)果)

(3)把四邊形ABCD向左平移6個單位,再向下平移1個單位得到四邊形A'B'C'D',在圖中畫出四邊形A'B'C'D',并寫出A'B'C'D'的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周

寫出點B的坐標______

當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.

在移動過程中,當點Px軸距離為5個單位長度時,求點P移動的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,折線AC﹣BC是一條公路的示意圖,AC=8km,甲騎摩托車從A地沿這條公路到B地,速度為40km/h,乙騎自行車從C地到B地,速度為10km/h,兩人同時出發(fā),結(jié)果甲比乙早到6分鐘.

(1)求這條公路的長;
(2)設甲乙出發(fā)的時間為t小時,求甲沒有超過乙時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了貫徹教育部關于中小學生“每天鍛煉一小時”的要求,某市教育局做了一次隨機抽樣調(diào)查,其內(nèi)容是:(1)學生每天鍛煉時間是否達到1小時;(2)學生每天鍛煉時間未達到1小時的原因.隨機調(diào)查了600名學生,把所得的數(shù)據(jù)制成了如下的扇形統(tǒng)計圖和條形統(tǒng)計圖(不完整)
根據(jù)圖示,回答以下問題:
(1)每天鍛煉時間達到1小時的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是;
每天鍛煉時間未達到1小時的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是;
每天鍛煉時間未達到1小時的人數(shù)為人,其中原因是“時間被擠占”的人數(shù)是人;
(2)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;
(3)若該市現(xiàn)有中小學生約27萬人,據(jù)此調(diào)查,可估計今年該市中小學生每天鍛煉未達到1小時的學生約有多少萬人?
(4)從這次接受調(diào)查的學生中,隨機抽取一名學生的“每天鍛煉一小時”的情況,回答內(nèi)容為“時間被擠占”的概率是多少?

查看答案和解析>>

同步練習冊答案