【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=2,且拋物線經(jīng)過A(﹣1,0),C(0,﹣5)兩點(diǎn),與x軸交于點(diǎn)B.
(1)若直線y=mx+n經(jīng)過B、C兩點(diǎn),求直線BC和拋物線的解析式;
(2)設(shè)點(diǎn)P為拋物線上的一個(gè)動(dòng)點(diǎn),連接PB、PC,若△BPC是以BC為直角邊的直角三角形,求此時(shí)點(diǎn)P的坐標(biāo);
(3)在拋物線上BC段有另一個(gè)動(dòng)點(diǎn)Q,以點(diǎn)Q為圓心作⊙Q,使得⊙Q與直線BC相切,在運(yùn)動(dòng)的過程中是否存在一個(gè)最大⊙Q?若存在,請(qǐng)直接寫出最大⊙Q的半徑;若不存在,請(qǐng)說明理由.
【答案】
(1)
解:∵對(duì)稱軸為x=2,且拋物線經(jīng)過A(﹣1,0),
∴B(5,0).
把B(5,0),C(0,﹣5)分別代入y=mx+n得 ,解得: ,
∴直線BC的解析式為y=x﹣5.
設(shè)y=a(x﹣5)(x+1),把點(diǎn)C的坐標(biāo)代入得:﹣5a=﹣5,解得:a=1,
∴拋物線的解析式為:y=x2﹣4x﹣5
(2)
解:①過點(diǎn)C作CP1⊥BC,交拋物線于點(diǎn)P1,如圖,
則直線CP1的解析式為y=﹣x﹣5,
由 ,解得: (舍去), ,
∴P1(3,﹣8);
②過點(diǎn)B作BP2⊥BC,交拋物線于P2,如圖,
則BP2的解析式為y=﹣x+5,
由 ,解得: (舍去), ,
∴P2(﹣2,7)
(3)
解:由題意可知,Q點(diǎn)距離BC最遠(yuǎn)時(shí),半徑最大.平移直線BC,使其與拋物線只有一個(gè)公共點(diǎn)Q(即相切),設(shè)平移后的直線解析式為y=x+t,
由 ,消去y整理得x2﹣5x﹣5﹣t=0,
△=25+4(5+t)=0,解得t=﹣ ,
∴平移后與拋物線相切時(shí)的直線解析式為y=x﹣ ,且Q( ,﹣ ),
連接QC、QB,作QE⊥BC于E,如圖,
設(shè)直線y=x﹣ 與y軸的交點(diǎn)為H,連接HB,
則 ,
∵CH=﹣5﹣(﹣ )= ,
∴ = ,
∴ ,
∵ ,BC= ,
∴QE= ,
即最大半徑為
【解析】(1)根據(jù)對(duì)稱軸及A點(diǎn)坐標(biāo)得出B點(diǎn)坐標(biāo),從而得出直線BC解析式,再由A、B、C三點(diǎn)坐標(biāo)得出拋物線解析式;(2)分別過B、C兩點(diǎn)作BC的垂線,得出垂線的解析式,與拋物線解析式聯(lián)立解出P點(diǎn);(3)平移BC到與拋物線剛好相切之處,此時(shí)的切點(diǎn)即為Q點(diǎn),此時(shí)Q點(diǎn)距BC的距離最大,也就是半徑最大.由于初中階估沒學(xué)點(diǎn)到直線的距離公式,那么這里可以用等面積法進(jìn)行處理.設(shè)切線與y軸的交點(diǎn)為H,則△HBC與△QBC的面積相等,算出面積,再以BC為底,算出BC邊上的高即為答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】△ABC的底邊BC=10cm,當(dāng)BC邊上的高線AD從小到大變化時(shí),△ABC的面積也隨之變化.
(1)在這個(gè)變化過程中,自變量和因變量各是什么?
(2)△ABC的面積S(cm2)與高線h(cm)之間的關(guān)系式是什么?
(3)用表格表示當(dāng)h由4cm變到10cm時(shí)(每次增加1cm),S的相應(yīng)值;
(4)當(dāng)h每增加1cm時(shí),S如何變化?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,需在一面墻上繪制幾個(gè)相同的拋物線型圖案.按照?qǐng)D中的直角坐標(biāo)系,最左邊的拋物線可以用y=ax2+bx(a≠0)表示.已知拋物線上B,C兩點(diǎn)到地面的距離均為 m,到墻邊OA的距離分別為 m, m.
(1)求該拋物線的函數(shù)關(guān)系式,并求圖案最高點(diǎn)到地面的距離;
(2)若該墻的長度為10m,則最多可以連續(xù)繪制幾個(gè)這樣的拋物線型圖案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果△ABC和△DEF這兩個(gè)三角形全等,點(diǎn)C和點(diǎn)E,點(diǎn)B和點(diǎn)D分別是對(duì)應(yīng)點(diǎn),則另一組對(duì)應(yīng)點(diǎn)是________,對(duì)應(yīng)邊是______________,對(duì)應(yīng)角是_____________,表示這兩個(gè)三角形全等的式子是___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點(diǎn)D,交AB的延長線于點(diǎn)E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng) = 時(shí),求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,∠A=36°,∠ABC=∠ACB,∠1=∠2,∠3=∠4,BD與CE交于點(diǎn)O,則圖中等腰三角形有( 。
A. 6個(gè) B. 7個(gè) C. 8個(gè) D. 9個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,AB=AC,∠A=60°,BD⊥AC于點(diǎn)D,DG∥AB,DG交BC于點(diǎn)G,點(diǎn)E在BC的延長線上,且CE=CD.
(1)求∠ABD和∠BDE的度數(shù);
(2)寫出圖中的等腰三角形(寫出3個(gè)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,邊長為2的正方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上,二次函數(shù)y=﹣ x2+bx+c的圖象經(jīng)過B、C兩點(diǎn).
(1)求該二次函數(shù)的解析式;
(2)結(jié)合函數(shù)的圖象探索:當(dāng)y>0時(shí)x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com