【題目】201979日,北京市滴滴快車調整了價格,規(guī)定車費由“總里程費+總時長費”兩部分構成,具體收費標準如下表:(注:如果車費不足起步價,則按起步價收費.)

時間段

里程費(元/千米)

時長費(元/分鐘)

起步價(元)

06:00—10:00

1.80

0.80

14.00

10:00—17:00

1.45

0.40

13.00

17:00—21:00

1.50

0.80

14.00

21:00—06:00

2.15

0.80

14.00

1)小明07:10乘快車上學,行駛里程6千米,時長10分鐘,應付車費 元;

2)小芳17:20乘快車回家,行駛里程1千米,時長15分鐘,應付車費 元;

3)小華晚自習后乘快車回家,20:45在學校上車.由于道路施工,車輛行駛緩慢,15分鐘后選擇另外道路,改道后速度是改道前速度的3倍,10分鐘后到家,共付了車費37.4元,問從學校到小華家快車行駛了多少千米?

【答案】118.8元;(214元; 3)從學校到小華家快車行駛了9千米.

【解析】

1)根據(jù)里程費+時長費,列式可得車費;

2)根據(jù)行車里程1千米,時長15分鐘,算出車費,和起步價比較,即可得到實付車費;

3)設改道前的速度為x千米/時,則改道后的速度為3x千米/時,根據(jù)里程費+時長費=37.4,列方程求得x的值,進而得到結論.

1)應付車費=1.8×6+0.8×10=18.8元;

2)∵1.5×1+0.8×15=13.513.5元<起步價14元,

∴應付車費=14元;

3)設改道前的速度為x千米/時,則改道后的速度為3x千米/時.根據(jù)題意得:

解得:x=12

3x=36

答:從學校到小華家快車行駛了9千米.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】1)小明準備制作一個封閉的正方體盒子,他先用5個大小一樣的正方形制成如圖1所示的拼接圖形(實線部分),經(jīng)折疊后發(fā)現(xiàn)還少一個面,請在圖中的拼接圖形上再接一個正方形,使新拼接的圖形經(jīng)過折疊后能成為一個封閉的正方體盒子.(添加的正方形用陰影表示.只要畫出一種即可)

2)如圖2所示的幾何體是由幾個相同的正方體搭成的,請畫出它從正面看的形狀圖.

3)如圖3是幾個正方體所組成的幾何體從上面看的形狀圖,小正方形中的數(shù)字表示該位置小正方體的個數(shù),請畫出這個幾何體從左面看的形狀圖.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2﹣2x+3與x軸交于點A、B,把拋物線在x軸及其上方的部分記作C1,將C1關于點B中心對稱得C2,C2x軸交于另一點C,將C2關于點C中心對稱得C3,連接C1C3的頂點,則圖中陰影部分的面積為_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正比例函數(shù)y=2x與反比例函數(shù)y=(k>0)的圖象交于A、B兩點,且點A的橫坐標為4,

(1)求k的值;

(2)根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍;

(3)過原點O的另一條直線l交雙曲線y=(k>0)于P、Q兩點(P點在第一象限),若由點A、P、B、Q為頂點組成的四邊形面積為224,求點P的坐標.

【答案】(1) k=32 (2) x<﹣8或0<x<8 (3) P(﹣7+3 ,16+);或P(7+3,﹣16+

【解析】分析:(1)先將x=4代入正比例函數(shù)y=2x,可得出y=8,求得點A(4,8),再根據(jù)點AB關于原點對稱,得出B點坐標,即可得出k的值;

(2)正比例函數(shù)的值小于反比例函數(shù)的值即正比例函數(shù)的圖象在反比例函數(shù)的圖象下方,根據(jù)圖形可知在交點的右邊正比例函數(shù)的值小于反比例函數(shù)的值.

(3)由于雙曲線是關于原點的中心對稱圖形,因此以A、B、P、Q為頂點的四邊形應該是平行四邊形,那么△POA的面積就應該是四邊形面積的四分之一即56.可根據(jù)雙曲線的解析式設出P點的坐標,然后表示出△POA的面積,由于△POA的面積為56,由此可得出關于P點橫坐標的方程,即可求出P點的坐標.

詳解:(1)∵點A在正比例函數(shù)y=2x上,

把x=4代入正比例函數(shù)y=2x,

解得y=8,點A(4,8),

把點A(4,8)代入反比例函數(shù)y=,得k=32,

(2)∵點A與B關于原點對稱,

B點坐標為(﹣4,﹣8),

由交點坐標,根據(jù)圖象直接寫出正比例函數(shù)值小于反比例函數(shù)值時x的取值范圍,x<﹣8或0<x<8;

(3)∵反比例函數(shù)圖象是關于原點O的中心對稱圖形,

∴OP=OQ,OA=OB,

四邊形APBQ是平行四邊形,

SPOA=S平行四邊形APBQ×=×224=56,

設點P的橫坐標為m(m>0且m≠4),

得P(m, ),

過點P、A分別做x軸的垂線,垂足為E、F,

點P、A在雙曲線上,

∴SPOE=SAOF=16,

若0<m<4,如圖,

∵SPOE+S梯形PEFA=SPOA+SAOF

∴S梯形PEFA=SPOA=56.

(8+)(4﹣m)=56.

m1=﹣7+3,m2=﹣7﹣3(舍去),

P(﹣7+3,16+);

若m>4,如圖,

∵SAOF+S梯形AFEP=SAOP+SPOE,

∴S梯形PEFA=SPOA=56.

×(8+)(m﹣4)=56,

解得m1=7+3,m2=7﹣3(舍去),

P(7+3,﹣16+).

點P的坐標是P(﹣7+3,16+);或P(7+3,﹣16+).

點睛:本題考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=k的幾何意義.這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.利用數(shù)形結合的思想,求得三角形的面積.

型】解答
束】
23

【題目】如圖,在梯形ABCD中,ADBC,AB=DC=AD=9,ABC=70°,點E,F(xiàn)分別在線段AD,DC上(點E與點A,D不重合),且∠BEF=110°.

(1)求證:△ABE∽△DEF.

(2)當點EAD中點時,求DF的長;

(3)在線段AD上是否存在一點E,使得F點為CD的中點?若存在,求出AE的長度;若不存在,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】嫦娥四號探測器于201913日,成功著陸在月球背面,通過鵲橋中繼星傳回了世界第一張近距離拍攝的月背影像圖,開啟了人類月球探測新篇章.當中繼星成功運行于地月拉格朗日L2點時,它距離地球約1500000km.用科學記數(shù)法表示數(shù)1500000( )

A. 15×105 B. 1.5×106 C. 0.15×107 D. 1.5×105

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】古希臘畢達哥拉斯學派的數(shù)學家經(jīng)常用小石子擺成各種形狀來研究數(shù)學問題.

如圖1,由于這些三角形是由1個,3個,6個,10個,… 小石子擺成的,所以他們稱1,3,6,10,…,這些數(shù)為三邊形數(shù);類似的,如圖2,他們稱1,4,9,16,…,這樣的數(shù)為四邊形數(shù).

1)既是三邊形數(shù),又是四邊形數(shù),且大于1的最小正整數(shù)是 ;

2)如果記第nk邊形小石子的個數(shù)為k≥3),那么易得,,

;

; ;

如果,那么 ;

3)如果進一步研究發(fā)現(xiàn),,…,那么

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABAC,BEAC于點ECFAB于點F,BECF交于點D,則下列結論中不正確的是(  )

A. ABE≌△ACF B. DBAC的平分線上

C. BDF≌△CDE D. DBE的中點

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC內接于⊙O,且AB=BC.AD是⊙O的直徑,AC、BD交于點E,PDB延長線上一點,且PB=BE.

(1)求證:ABE∽△DBA;

(2)試判斷PA與⊙O的位置關系,并說明理由;

(3)若EBD的中點,求tanADC的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次運輸任務中,一輛汽車將一批貨物從甲地運往乙地,到達乙地卸貨后返回甲地.設汽車從甲地出發(fā)xh)時,汽車與甲地的距離為ykm),yx的關系如圖所示.

根據(jù)圖像回答下列問題:

1)汽車在乙地卸貨停留 h);

2)求汽車返回甲城時yx的函數(shù)解析式,并寫出定義域;

3)求這輛汽車從甲地出發(fā)4 h時與甲地的距離.

查看答案和解析>>

同步練習冊答案