【題目】在四邊形中,邊上一點(diǎn),點(diǎn)出發(fā)以秒的速度沿線段運(yùn)動(dòng),同時(shí)點(diǎn)出發(fā),沿線段、射線運(yùn)動(dòng),當(dāng)運(yùn)動(dòng)到,兩點(diǎn)都停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為(秒):

1)當(dāng)的速度相同,且時(shí),求證:

2)當(dāng)的速度不同,且分別在上運(yùn)動(dòng)時(shí)(如圖1),若全等,求此時(shí)的速度和值;

3)當(dāng)運(yùn)動(dòng)到上,運(yùn)動(dòng)到射線上(如圖2),若的速度為秒,是否存在恰當(dāng)?shù)倪?/span>的長,使在運(yùn)動(dòng)過程中某一時(shí)刻剛好全等,若存在,請求出此時(shí)的值和邊的長;若不存在,請說明理由.

【答案】1)見解析;(2的速度為3,t的值為2;(3的長為時(shí),兩三角形全等

【解析】

1)根據(jù)SAS即可證明EBP≌△PCQ

2)正確尋找全等三角形的對應(yīng)邊,根據(jù)路程,速度,時(shí)間的關(guān)系即可解決問題.

3)分兩種情形分別構(gòu)建方程組即可解決問題.

1)由題意:BP=CQ=1×2=2cm),

BC=8cm,BE=6cm,

PC=8-2=6cm),

,,,,

2)設(shè)的速度為,

,

分兩種情況:

①當(dāng)時(shí),,

,解得,(舍去)

當(dāng)時(shí),,

,解得,

Q的速度為3t的值為2.

3)設(shè),則

分兩種情況:

①當(dāng)時(shí),

,解得,

,

,解得

故:當(dāng)的長為時(shí),兩三角形全等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.

(1)求證:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)操作發(fā)現(xiàn):如圖1,D是等邊三角形ABCBA上一動(dòng)點(diǎn)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在BC上方作等邊三角形DCF,連接AF.你能發(fā)現(xiàn)線段AFBD之間的數(shù)量關(guān)系嗎?并證明你發(fā)現(xiàn)的結(jié)論.

2)類比猜想:如圖2,當(dāng)動(dòng)點(diǎn)D運(yùn)動(dòng)到等邊三角形ABCBA的延長線上時(shí),其他作法與(1)相同,猜想AFBD在(1)中的結(jié)論是否仍然成立?如果成立,請證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.

3)深入探究:①如圖3,當(dāng)動(dòng)點(diǎn)D在等邊三角形ABC的邊BA上運(yùn)動(dòng)時(shí)(點(diǎn)D與點(diǎn)B不重合),連接DC,以DC為邊在其上方、下方分別作等邊三角形DCF和等邊三角形DCF',連接AF,BF′.探究AFBF′AB有何數(shù)量關(guān)系?并證明你發(fā)現(xiàn)的結(jié)論。

②如圖4,當(dāng)動(dòng)點(diǎn)D在等邊三角形ABC的邊BA的延長線上運(yùn)動(dòng)時(shí),其他作法與圖3相同,①中的結(jié)論是否仍然成立?如果成立,請證明;如果不成立,是否有新的結(jié)論?如果有新的結(jié)論,直接寫出新的結(jié)論,不需證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】八年級(jí)1)班學(xué)生在完成課題學(xué)習(xí)體質(zhì)健康測試中的數(shù)據(jù)分析后,利用課外活動(dòng)時(shí)間積極參加體育鍛煉,每位同學(xué)從籃球、跳繩、立定跳遠(yuǎn)、長跑、鉛球中選一項(xiàng)進(jìn)行訓(xùn)練,訓(xùn)練后都進(jìn)行了測試現(xiàn)將項(xiàng)目選擇情況及訓(xùn)練后籃球定時(shí)定點(diǎn)投籃測試成績整理后作出如下統(tǒng)計(jì)圖

請你根據(jù)上面提供的信息回答下列問題:

1)扇形圖中跳繩部分的扇形圓心角為 度,該班共有學(xué)生 人, 訓(xùn)練后籃球定時(shí)定點(diǎn)投籃平均每個(gè)人的進(jìn)球數(shù)是

2)老師決定從選擇鉛球訓(xùn)練的3名男生和1名女生中任選兩名學(xué)生先進(jìn)行測試,請用列表或畫樹形圖的方法求恰好選中兩名男生的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】CD經(jīng)過∠BCA頂點(diǎn)C的一條直線,CA=CB.E,F(xiàn)分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠α.

(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E,F(xiàn)在射線CD上,請解決下面兩個(gè)問題:

如圖1,若∠BCA=90°,∠α=90°,則BE_____CF;EF_____|BE﹣AF|(填“>”,“<”“=”);

如圖2,若0°<∠BCA<180°,請?zhí)砑右粋(gè)關(guān)于∠α∠BCA關(guān)系的條件_____,使中的兩個(gè)結(jié)論仍然成立。

(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠α=∠BCA,請?zhí)岢?/span>EF,BE,AF三條線段數(shù)量關(guān)系的合理猜想并給出理由。.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,是等邊三角形,是直線上一點(diǎn),以為頂點(diǎn)做 交過且平行于的直線于,求證:;當(dāng)的中點(diǎn)時(shí),(如圖1)小明同學(xué)很快就證明了結(jié)論:他的做法是:取的中點(diǎn),連結(jié),然后證明 從而得到,我們繼續(xù)來研究:

1)如圖2、當(dāng)DBC上的任意一點(diǎn)時(shí),求證:

2)如圖3、當(dāng)DBC的延長線上時(shí),求證:

3)當(dāng)的延長線上時(shí),請利用圖4畫出圖形,并說明上面的結(jié)論是否成立(不必證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】清明節(jié)假期的某天,小強(qiáng)騎車從家出發(fā)前往革命烈士陵園掃墓,勻速行駛一段時(shí)間后,因車子出現(xiàn)問題,途中耽擱了一段時(shí)間,車子修好后,以更快的速度勻速前行,到達(dá)烈士陵園掃完墓后勻速騎車回家.其中表示小強(qiáng)從家出發(fā)后的時(shí)間,表示小強(qiáng)離家的距離,下面能反映變量之間關(guān)系的大致圖象是( )

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商家到梧州市一茶廠購買茶葉,購買茶葉數(shù)量為x千克(x>0),總費(fèi)用為y元,現(xiàn)有兩種購買方式.

方式一:若商家贊助廠家建設(shè)費(fèi)11500元,則所購茶葉價(jià)格為130元/千克;(總費(fèi)用=贊助廠家建設(shè)費(fèi)+購買茶葉費(fèi))

方式二:總費(fèi)用y(元)與購買茶葉數(shù)量x(千克)滿足下列關(guān)系式:y= .

請回答下面問題:

(1)寫出購買方式一的y與x的函數(shù)關(guān)系式;

(2)如果購買茶葉超過150千克,說明選擇哪種方式購買更省錢;

(3)甲商家采用方式一購買,乙商家采用方式二購買,兩商家共購買茶葉400千克,總費(fèi)用共計(jì)74600元,求乙商家購買茶葉多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)的圖象關(guān)于原點(diǎn)成中心對稱,我們就稱其中一個(gè)函數(shù)是另一個(gè)函數(shù)的中心對稱函數(shù),也稱函數(shù)互為中心對稱函數(shù).

求函數(shù)的中心對稱函數(shù);

如圖,在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點(diǎn)的坐標(biāo)分別為,二次函數(shù)的圖象經(jīng)過點(diǎn)E和原點(diǎn)O,頂點(diǎn)為已知函數(shù)互為中心對稱函數(shù);

請?jiān)趫D中作出二次函數(shù)的頂點(diǎn)作圖工具不限,并畫出函數(shù)的大致圖象;

當(dāng)四邊形EPFQ是矩形時(shí),請求出a的值;

已知二次函數(shù)互為中心對稱函數(shù),且的圖象經(jīng)過的頂點(diǎn)當(dāng)時(shí),求代數(shù)式的最大值.

查看答案和解析>>

同步練習(xí)冊答案