如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點,拋物線過A、B兩點。

(1)求這個拋物線的解析式;

(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N。求當(dāng)t 取何值時,MN有最大值?最大值是多少?

 

【答案】

;4

【解析】

試題分析:(1)易得A(0,2),B(4,0) (2分)

將x=0,y=2代入  

將x="4,y=0" 代入  

  (6分) 

(2)由題意易得(8分) 

  (10分)

當(dāng)          

考點:二次函數(shù)的綜合題

點評:在解題時要能靈運用二次函數(shù)的圖象和性質(zhì)求出二次函數(shù)的解析式,利用數(shù)形結(jié)合思想解題是本題的關(guān)鍵.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,一次函數(shù)y=x-5分別交x軸、y軸于A、B兩點,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A、B兩點.
(1)求二次函數(shù)的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個動點(E點位于D點上方),DE=
2

①若點D的橫坐標為t,用含t的代數(shù)式表示D、E的坐標;
②拋物線上是否存在點F,使點F與點D關(guān)于x軸對稱,如果存在,請求出△AEF的面積;如果不存在,請說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙教版九年級(上)第一次月考數(shù)學(xué)試卷(六)(解析版) 題型:解答題

如圖,一次函數(shù)分別交y軸、x軸于A、B兩點,拋物線y=-x2+bx+c過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013年河南省焦作市孟州市中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

如圖,一次函數(shù)分別交y軸、x軸于A、B兩點,拋物線y=-x2+bx+c過A、B兩點.
(1)求這個拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t取何值時,MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年上海市金山區(qū)中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

如圖,一次函數(shù)y=x-5分別交x軸、y軸于A、B兩點,二次函數(shù)y=-x2+bx+c的圖象經(jīng)過A、B兩點.
(1)求二次函數(shù)的解析式;
(2)設(shè)D、E是線段AB上異于A、B的兩個動點(E點位于D點上方),DE=
①若點D的橫坐標為t,用含t的代數(shù)式表示D、E的坐標;
②拋物線上是否存在點F,使點F與點D關(guān)于x軸對稱,如果存在,請求出△AEF的面積;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(湖南株洲卷)數(shù)學(xué)(解析版) 題型:解答題

如圖,一次函數(shù)分別交y軸、x軸于A、B兩點,拋物線y=﹣x2+bx+c過A、B兩點.

(1)求這個拋物線的解析式;

(2)作垂直x軸的直線x=t,在第一象限交直線AB于M,交這個拋物線于N.求當(dāng)t取何值時,MN有最大值?最大值是多少?

(3)在(2)的情況下,以A、M、N、D為頂點作平行四邊形,求第四個頂點D的坐標.

 

查看答案和解析>>

同步練習(xí)冊答案