【題目】
(1)計(jì)算:3×(﹣2)2﹣|﹣4|﹣6×
(2)先化簡,再求值: x﹣2( x2﹣y2)﹣[2y﹣(x2﹣2y2)],其中x=2,y=﹣4.
【答案】
(1)解:原式=3×4﹣4﹣9=12﹣13=﹣1
(2)解:原式= x﹣x2+2y2﹣2y+x2﹣2y2= x﹣2y,
當(dāng)x=2,y=﹣4時(shí),原式=1+8=9
【解析】(1)運(yùn)算順序是:先算乘方和絕對值運(yùn)算,再算乘方運(yùn)算,然后進(jìn)行減法運(yùn)算。
(2)先去括號,再合并同類項(xiàng),化簡,再代入求值即可。
【考點(diǎn)精析】本題主要考查了有理數(shù)的四則混合運(yùn)算和代數(shù)式求值的相關(guān)知識點(diǎn),需要掌握在沒有括號的不同級運(yùn)算中,先算乘方再算乘除,最后算加減;求代數(shù)式的值,一般是先將代數(shù)式化簡,然后再將字母的取值代入;求代數(shù)式的值,有時(shí)求不出其字母的值,需要利用技巧,“整體”代入才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,△ABC在平面直角坐標(biāo)系中的位置如圖①所示,A點(diǎn)坐標(biāo)為(﹣4,0),B點(diǎn)坐標(biāo)為(6,0),點(diǎn)D為BC的中點(diǎn),點(diǎn)E為線段AB上一動點(diǎn),連接DE經(jīng)過點(diǎn)A、B、C三點(diǎn)的拋物線的解析式為.
(1)求拋物線的解析式;
(2)如圖①,將△ADE以DE為軸翻折,點(diǎn)A的對稱點(diǎn)為點(diǎn)G,當(dāng)點(diǎn)G恰好落在拋物線的對稱軸上時(shí),求G點(diǎn)的坐標(biāo);
(3)如圖②,當(dāng)點(diǎn)E在線段AB上運(yùn)動時(shí),拋物線的對稱軸上是否存在點(diǎn)F,使得以C、D、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)E、F的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以Rt△ABC的三邊為斜邊分別向外作等腰直角三角形.若斜邊AB= ,則圖中陰影部分的面積為( )
A.1
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點(diǎn)E在AB上,以AE為直徑的⊙O與BC相切于點(diǎn)D,連接AD.
(1)求證:AD平分∠BAC;
(2)若⊙O的直徑為10,sin∠DAC=,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解,我們把依次連接任意一個(gè)四邊形各邊中點(diǎn)得到的四邊形叫中點(diǎn)四邊形,如圖1,在四邊形ABCD中,E,F(xiàn),G,H分別是邊AB,BC,CD,DA的中點(diǎn),依次連接各邊中點(diǎn)得到中點(diǎn)四邊形EFGH.
(1)這個(gè)中點(diǎn)四邊形EFGH的形狀是;
(2)如圖2,在四邊形ABCD中,點(diǎn)M在AB上且△AMD和△MCB為等邊三角形,E、F、G、H分別為AB、BC、CD、AD的中點(diǎn),試判斷四邊形EFGH的形狀并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P是Rt△ABC斜邊AB上一動點(diǎn)(不與A,B重合),分別過A,B向直線CP作垂線,垂足分別為E,F(xiàn).
(1)如圖1,當(dāng)點(diǎn)P為AB的中點(diǎn)時(shí),連接AF,BE.求證:四邊形AEBF是平行四邊形;
(2)如圖2,當(dāng)點(diǎn)P不是AB的中點(diǎn),取AB的中點(diǎn)Q,連接EQ,F(xiàn)Q.試判斷△QEF的形狀,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,由兩個(gè)長為9,寬為3的全等矩形疊合而得到四邊形ABCD,則四邊形ABCD面積的最大值是( )
A.15
B.16
C.19
D.20
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是△ABC的中線.
(1)畫圖:延長AD到E,使ED=AD,連接BE、CE;
(2)四邊形ABEC是平行四邊形嗎?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F、G、H分別是任意四邊形ABCD中AD、BD、BC、CA的中點(diǎn),當(dāng)四邊形ABCD的邊至少滿足條件時(shí),四邊形EFGH是菱形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com