【題目】如圖,分別位于反比例函數(shù)y=,y=在第一象限圖象上的兩點(diǎn)A,B,與原點(diǎn)O在同一直線上,且.
(1)求反比例函數(shù)y=的表達(dá)式;
(2)過點(diǎn)A作x軸的平行線交y=的圖象于點(diǎn)C,連接BC,求△ABC的面積.
【答案】(1)y=;(2) 8.
【解析】試題分析:(1)作AE、BF分別垂直于x軸,垂足為E、F,根據(jù)△AOE∽△BOF,則設(shè)A的橫坐標(biāo)是m,則可利用m表示出A和B的坐標(biāo),利用待定系數(shù)法求得k的值;
(2)根據(jù)AC∥x軸,則可利用m表示出C的坐標(biāo),利用三角形的面積公式求解.
試題解析:
(1)作AE,BF分別垂直于x軸,垂足為E,F,
∴AE∥BF,∴△AOE∽△BOF,
∴===.
由點(diǎn)A在函數(shù)y=的圖象上,
設(shè)A的坐標(biāo)是,
∴==, ==,
∴OF=3m,BF=,
即B的坐標(biāo)是.
又點(diǎn)B在y=的圖象上,
∴=,解得k=9,
則反比例函數(shù)y=的表達(dá)式是y=.
(2)由(1)可知A,B,
又已知過A作x軸的平行線交y=的圖象于點(diǎn)C,
∴C的縱坐標(biāo)是.
把y=代入y=得x=9m,
∴C的坐標(biāo)是,
∴AC=9m-m=8m.
∴S△ABC=×8m×=8.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣4與x軸交于A(4,0)、B(﹣2,0)兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)P是線段AB上一動點(diǎn)(端點(diǎn)除外),過點(diǎn)P作PD∥AC,交BC于點(diǎn)D,連接CP.
(1)求該拋物線的解析式;
(2)當(dāng)動點(diǎn)P運(yùn)動到何處時(shí),BP2=BDBC;
(3)當(dāng)△PCD的面積最大時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,已知三角形ABC的邊AB是⊙O的切線,切點(diǎn)為B.AC經(jīng)過圓心O并與圓相交于點(diǎn)D、C,過C作直線CE丄AB,交AB的延長線于點(diǎn)E.
(1)求證:CB平分∠ACE;
(2)若BE=3,CE=4,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中國首艘完全自主建造的航空母艦于近日正式下水,據(jù)悉這艘航母水量將達(dá)到50000噸,直追伊麗莎白女王級航母,將500000這個(gè)數(shù)用科學(xué)記數(shù)法表示為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A,B兩點(diǎn)的縱坐標(biāo)分別為7和1,直線AB與y軸所夾銳角為60°.
(1)求線段AB的長;
(2)求經(jīng)過A,B兩點(diǎn)的反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=BC=2AD,點(diǎn)E、F分別是AB、BC邊的中點(diǎn),連接AF、CE交于點(diǎn)M,連接BM并延長交CD于點(diǎn)N,連接DE交AF于點(diǎn)P,則結(jié)論:①∠ABN=∠CBN;②DE∥BN;③△CDE是等腰三角形;④EM:BE= :3;⑤S△EPM= S梯形ABCD , 正確的個(gè)數(shù)有( )
A. 5個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com