【題目】已知拋物線的解析式是,則下列說法正確的是( )
A. 拋物線的對稱軸是直線 B. 拋物線的頂點(diǎn)坐標(biāo)是 C. 該二次函數(shù)有最小值 D. 當(dāng)時(shí),隨的增大而增大
【答案】D
【解析】
A、根據(jù)此拋物線的解析式可以確定對稱軸方程;
B、根據(jù)此拋物線的解析式可以確定拋物線的頂點(diǎn)坐標(biāo);
C、根據(jù)此拋物線的解析式和開口方向可以確定二次函數(shù)的最值;
D、利用拋物線的對稱軸方程和開口方向可以確定函數(shù)的增減性.
A、根據(jù)該拋物線的解析式知道:拋物線的對稱軸是直線x=1,故選項(xiàng)錯(cuò)誤;B、根據(jù)該拋物線的解析式知道:拋物線的頂點(diǎn)坐標(biāo)是(1,2),故選項(xiàng)錯(cuò)誤;
C、根據(jù)該拋物線的解析式知道:二次函數(shù)有最大值2,故選項(xiàng)錯(cuò)誤;
D、根據(jù)該拋物線的解析式知道:開口方向向下,當(dāng)x≤1時(shí),y隨x的增大而增大,故選項(xiàng)正確.
故選:D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形的邊長為厘米,對角線上的兩個(gè)動點(diǎn),.點(diǎn)從點(diǎn),點(diǎn)從點(diǎn)同時(shí)出發(fā),沿對角線以厘米/秒的相同速度運(yùn)動,過作交的直角邊于,過作交的直角邊于,連接,.設(shè)、、、圍成的圖形面積為,,,圍成的圖形面積為(這里規(guī)定:線段的面積為到達(dá),到達(dá)停止.若的運(yùn)動時(shí)間為秒,解答下列問題:
如圖,判斷四邊形是什么四邊形,并證明;
當(dāng)時(shí),求為何值時(shí),;
若是與的和,試用的代數(shù)式表示.(如圖為備用圖)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB=AC=8,∠BAC=90,直線l與以AB為直徑的⊙O相切于點(diǎn)B,點(diǎn)D是直線l上任意一動點(diǎn),連結(jié)DA交⊙O點(diǎn)E.
(1)當(dāng)點(diǎn)D在AB上方且BD=6時(shí),求AE的長;
(2)當(dāng)CE恰好與⊙O相切時(shí),求BD的長為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠B=30°,邊AB的垂直平分線DE交AB于點(diǎn)E,交BC于點(diǎn)D.CD=3,則BC的長為( )
A. 6 B. 9 C. 6 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,的垂直平分線交于點(diǎn),交于點(diǎn),且,添加一個(gè)條件,能證明四邊形為正方形的是________.
①; ②; ③; ④.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△DEF的頂點(diǎn)在等邊△ABC的邊上.
(1)求證:BE=CD;
(2)若BD=2CD,求∠DFC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:E是∠AOB的平分線上一點(diǎn),EC⊥OB,ED⊥OA,C、D是垂足,連接CD,且交OE于點(diǎn)F.
(1)求證:DF=CF.
(2)若∠AOB=60,請你探究OE,EF之間有什么數(shù)量關(guān)系?并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正比例函數(shù)y=2x的圖象與一次函數(shù)y=kx+b的圖象交于點(diǎn)A(m,2),一次函數(shù)的圖象經(jīng)過點(diǎn)B(2,1).
(1)求一次函數(shù)的解析式;
(2)請直接寫出不等式組1<kx +b<2x的解集。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com