【題目】計算

1已知ab=-3,ab5,求多項式4a2b4ab24a4b的值;

2已知x2-3x-1=0,求代數(shù)式3-3 x2+9x的值?

【答案】1-48;(20

【解析】分析:(1)、首先進行分組分解,然后提取公因式,最后利用整體代入的思想進行求解;(2)、首先提取公因式-3,然后整體代入進行求解.

詳解:(1)、解:原式 =4 abab-4ab=4 ab-4)(ab=4ab-1)(ab

ab=-3,ab5時,

原式=4×51×(-3=4×4×(-3=48

(2)、原式=3x23x1),

x2-3x-1=0, 原式=-3×0=0

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:90°﹣42°15′=_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,一幢樓房AB背后有一臺階CD,臺階每層高0.2米,且AC=17.2米,設太陽光線與水平地面的夾角為α,當α=60°時,測得樓房在地面上的影長AE=10米,現(xiàn)有一只小貓睡在臺階的MN這層上曬太陽.(取1.73)

(1)求樓房的高度約為多少米?

(2)過了一會兒,當α=45°時,問小貓能否還曬到太陽?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】根據(jù)道路管理規(guī)定,在賀州某段筆直公路上行駛的車輛,限速40千米/時,已知交警測速點M到該公路A點的距離為米,∠MAB=45°,∠MBA=30°(如圖所示),現(xiàn)有一輛汽車由A往B方向勻速行駛,測得此車從A點行駛到B點所用的時間為3秒.

(1)求測速點M到該公路的距離;

(2)通過計算判斷此車是否超速.(參考數(shù)據(jù):≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖四邊形AOBC為正方形,點C的坐標為(4 ,0),動點P沿著折線OACB的方向以1個單位每秒的速度勻速運動,同時點Q沿著折線OBCA的方向勻速運動,速度是2個單位長度每秒,運動時間為t秒,當他們相遇時同時停止運動.

(1)點A的坐標是正方形AOBC的面積是
(2)將正方形繞點O順時針旋轉(zhuǎn)45°,求旋轉(zhuǎn)后的正方形與原正方形的重疊部分的面積.
(3)運動時間t為多少秒時,以A、P、B、Q四點為頂點的四邊形為平行四邊形?
(4)是否存在這樣的t值,使△OPQ成為等腰三角形?若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,A為某旅游景區(qū)的最佳觀景點,游客可從B處乘坐纜車先到達小觀景平臺DE觀景,然后再由E處繼續(xù)乘坐纜車到達A處,返程時從A處乘坐升降電梯直接到達C處,已知:AC⊥BC于C,DE∥BC,BC=110米,DE=9米,BD=60米,α=32°,β=68°,求AC的高度.(參考數(shù)據(jù):sin32°≈0.53;cos32°≈0.85;tan32°≈0.62;sin68°≈0.93;cos68°≈0.37;tan68°≈2.48)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果α是銳角,且tanα=cot20°,那么α=度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.

(1)求證:四邊形AECF是菱形;

(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有一張等腰三角形紙片,AB=AC=5,BC=3,小明將它沿虛線PQ剪開,得到AQP和四邊形BCPQ兩張紙片(如圖所示),且滿足BQP=B,則下列五個數(shù)據(jù),3,,2,中可以作為線段AQ長的有 個.

查看答案和解析>>

同步練習冊答案