如圖,拋物線y=﹣x2+3x+4與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),點(diǎn)D在拋物線上且橫坐標(biāo)為3.
(1)求tan∠DBC的值;
(2)點(diǎn)P為拋物線上一點(diǎn),且∠DBP=45°,求點(diǎn)P的坐標(biāo).
解:(1)令y=0,則﹣x2+3x+4=﹣(x+1)(x﹣4)=0,
解得 x1=﹣1,x2=4.
∴A(﹣1,0),B(4,0).
當(dāng)x=3時(shí),y=﹣32+3×3+4=4,
∴D(3,4).
如圖,連接CD,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E.
∵C(0,4),
∴CD∥AB,
∴∠BCD=∠ABC=45°.
在直角△OBC中,∵OC=OB=4,
∴BC=4.
在直角△CDE中,CD=3.
∴CE=ED=,
∴BE=BC﹣DE=.
∴tan∠DBC==;
(2)過(guò)點(diǎn)P作PF⊥x軸于點(diǎn)F.
∵∠CBF=∠DBP=45°,
∴∠PBF=∠DBC,
∴tan∠PBF=.
設(shè)P(x,﹣x2+3x+4),則=,
解得 x1=﹣,x2=4(舍去),
∴P(﹣,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
△ABC中,AB=AC,∠A為銳角,CD為AB邊上的高,I為△ACD的內(nèi)切圓圓心,則∠AIB的度數(shù)是( )
A.120° B.125° C.135° D.150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
當(dāng)m= ,m= 時(shí),函數(shù)y=(m+n)xn+(m-n)x的圖象是拋物線,且其頂點(diǎn)在原點(diǎn),此拋物線的開(kāi)口向 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖3-198所示,弦AB的長(zhǎng)為6 cm,圓心O到AB的距離為4 cm,則⊙O的半徑為 ( )
A.3 cm B.4 cm C.5 cm D.6 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖3-205所示,已知⊙O的半徑為5 cm,弦AB的長(zhǎng)為8 cm,P是AB延長(zhǎng)線上一點(diǎn),BP=2 cm,則tan∠OPA等于 ( )
A. B. C.2 D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,A、B是圓O上的兩點(diǎn),∠AOB=120°,C是AB弧的中點(diǎn).
(1)求證:AB平分∠OAC;
(2)延長(zhǎng)OA至P使得OA=AP,連接PC,若圓O的半徑R=1,求PC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(1)已知x2-4=0,求代數(shù)式x(x+1)2-x(x2+x)-x-7的值.
(2)先化簡(jiǎn),再求值:(x+3)2+(x+2)(x-2)-2x2,其中x=-.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com