【題目】如圖1是一張等腰直角三角形彩色紙,將斜邊上的高線四等分,然后裁出三張寬度相等的長方形紙條,若恰好可以用這些紙條為一幅正方形美術作品鑲邊(紙條不重疊),則這張彩色紙的面積與鑲嵌所得的作品(如圖2)面積之比為( )
A.2:3
B.3:4
C.1:1
D.4:3
【答案】C
【解析】設三張寬度相等的長方形紙條的寬為x,則等腰直角三角形的高為4x,如圖1,
∴AB=8x,
∴S△ABC= 4x8x=16x2,
∵DE∥AB,F(xiàn)G∥AB,MN∥AB,
∴ = , = , = ,
∴DE= AB=2x,F(xiàn)G=4x,MN=6x,
∴DE+FG+MN=2x+4x+6x=12x,∴鑲嵌所得的作品的周長為12x=4x=16x,
∴鑲嵌所得的作品的邊長為4x,∴鑲嵌所得的作品的面積=16x2,
∴這張彩色紙的面積與鑲嵌所得的作品(如圖2)面積之比為1:1.
所以答案是:C.
【考點精析】通過靈活運用相似三角形的判定與性質,掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如果一個三角形能被一條線段分割成兩個等腰三角形,那么稱這條線段為這個三角形的特異線,稱這個三角形為特異三角形.
(1)如圖1,△ABC中,∠B=2∠C,線段AC的垂直平分線交AC于點D,交BC于點E.求證:AE是△ABC的一條特異線.
(2)如圖2,已知△ABC是特異三角形,且∠A=30°,∠B為鈍角,求出所有可能的∠B的度數(shù).
(3)如圖3,△ABC是一個腰長為2的等腰銳角三角形,且它是特異三角形,若它的頂角度數(shù)為整數(shù),請求出其特異線的長度;若它的頂角度數(shù)不是整數(shù),請直接寫出頂角度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為創(chuàng)建“綠色學校”,綠化校園環(huán)境,我校計劃分兩次購進A、B兩種花草,第一次分別購進A、B兩種花草30棵和15棵,共花費675元;第二次分別購進A、B兩種花草12棵和5棵,共花費265元(兩次購進同種花草價格相同).
(1)A、B兩種花草每棵的價格分別是多少元?
(2)若購買A、B兩種花草共30棵,且B種花草的數(shù)量不高于A種花草的數(shù)量的2倍,請你給出一種費用最省的方案,并求出該方案所需費用.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上A 點對應的數(shù)為﹣5,B 點在A 點右邊,電子螞蟻甲、乙在B分別以2個單位/秒、1個單位/秒的速度向左運動,電子螞蟻丙在A 以3個單位/秒的速度向右運動.
(1)若電子螞蟻丙經(jīng)過5秒運動到C 點,求C 點表示的數(shù);
(2)若它們同時出發(fā),若丙在遇到甲后1秒遇到乙,求B 點表示的數(shù);
(3)在(2)的條件下,設它們同時出發(fā)的時間為t 秒,是否存在t的值,使丙到乙的距離是丙到甲的距離的2倍?若存在,求出t 值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,二次函數(shù)y=﹣x2+6x﹣9的圖象頂點為A,與y軸交于點B.若在該二次函數(shù)圖形上取一點C,在x軸上取一點D,使得四邊形ABCD為平行四邊形,則D點的坐標為( )
A.(﹣9,0)
B.(﹣6,0)
C.(6,0)
D.(9,0)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小紅想用一條彩帶纏繞易拉罐,正好從A點繞到正上方B點共四圈,已知易拉罐底面周長是12 cm,高是20 cm,那么所需彩帶最短的是( )
A. 13 cm B. 4cm C. 4cm D. 52 cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AD平分∠CAB,交CB于點D,過點D作DE⊥AB,于點E
(1)求證:△ACD≌△AED;
(2)若∠B=30°,CD=1,求BD的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A點的坐標是(0,6),AB=BO,∠ABO=120°,C在x軸上運動,在坐標平面內作點D,使AD=DC,∠ADC=120°,連結OD,則OD的長的最小值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在正方形網(wǎng)格中,每個小正方形的邊長為1.在網(wǎng)格中構造格點△ABC(即△ABC 三個頂點都在小正方形的頂點處),AB、BC、AC三邊的長分別為、、,利用網(wǎng)格就能計算三角形的面積.
(1)請你將△ABC的面積直接填寫在橫線上.
(2)在圖②中畫出△DEF,DE、EF、DF三邊的長分別為、、.
①判斷三角形的形狀,說明理由.
②求這個三角形的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com