【題目】小彬和小明每天早晨堅(jiān)持跑步,小彬每秒跑4米,小明每秒跑6米.
(1)如果他們站在百米跑道的兩端同時(shí)相向起跑,那么幾秒后兩人相遇?
(2)如果小明站在百米跑道的起點(diǎn)處,小彬站在他前面10米處,兩人同時(shí)同向起跑,幾秒后小明能追上小彬?
(2)如果他們都站在四百米環(huán)形跑道的起點(diǎn)處,兩人同時(shí)同向起跑,幾分鐘后他們再次相遇?
【答案】(1)10秒后兩人相遇;(2)5秒后小彬追上小明;(3)分鐘后小彬追上小明.
【解析】試題分析:(1)此問利用行程中的相遇問題解答,兩人所行路程和等于總路程;
(2)(3)此問利用行程中的追及問題解答,兩人所行路程差等于兩人相距的路程.這兩問利用最基本的數(shù)量關(guān)系:速度×時(shí)間=路程.
試題解析:解:(1)設(shè)x秒后兩人相遇,根據(jù)題意得:6x+4x=100,
解得x=10;
答:10秒后兩人相遇;
(2)解:設(shè)y秒后小彬追上小明,根據(jù)題意得:6y-4y=10,
解得y=5;
答:兩人同時(shí)同向起跑,5秒后小彬追上小明.
(3)解:設(shè)a秒后小彬追上小明,根據(jù)題意得:6a-4a=400
解得a=200; 200秒=分鐘
答:兩人同時(shí)同向起跑, 分鐘后小彬追上小明.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】幾何計(jì)算:
如圖,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度數(shù).
解:因?yàn)?/span>∠BOC=3∠AOB,∠AOB=40°
所以∠BOC=__________°
所以∠AOC=__________ + _________
=__________° + __________°
=__________°
因?yàn)?/span>OD平分∠AOC
所以∠COD=__________=__________°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(4,0),B(1,3)兩點(diǎn),點(diǎn)C、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H.
(1)求拋物線的表達(dá)式;
(2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),且位于第四象限,當(dāng)△ABP的面積為6時(shí),求出點(diǎn)P的坐標(biāo);
(3)若點(diǎn)M在直線BH上運(yùn)動(dòng),點(diǎn)N在x軸上運(yùn)動(dòng),當(dāng)以點(diǎn)C、M、N為頂點(diǎn)的三角形為等腰直角三角形時(shí),請(qǐng)直接寫出此時(shí)△CMN的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點(diǎn)重合在點(diǎn)O處,AB=25,CD=17.保持紙片AOB不動(dòng),將紙片COD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當(dāng)BD與CD在同一直線上(如圖3)時(shí),求AC的長和α的正弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把一邊長為40cm的正方形硬紙板,進(jìn)行適當(dāng)?shù)募舨,折成一個(gè)長方形盒子(紙板的厚度忽略不計(jì))。
(1)如圖,若在正方形硬紙板的四角各剪一個(gè)同樣大小的正方形,將剩余部分折成一個(gè)無蓋的長方形盒子。
①要使折成的長方形盒子的底面積為484cm2,那么剪掉的正方形的邊長為多少?
②折成的長方形盒子的側(cè)面積是否有最大值?如果有,求出這個(gè)最大值和此時(shí)剪掉的正方形的邊長;如果沒有,說明理由。
(2)若在正方形硬紙板的四周剪掉一些矩形(即剪掉的矩形至少有一條邊在正方形硬紙板的邊上),將剩余部分折成一個(gè)有蓋的長方形盒子,若折成的一個(gè)長方形盒子的表面積為550cm2,求此時(shí)長方形盒子的長、寬、高(只需求出符合要求的一種情況)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖①、②分別是某種型號(hào)跑步機(jī)的實(shí)物圖與示意圖.已知踏板CD長為1.6m,CD與地面DE的夾角∠CDE為12°,支架AC長為0.8m,∠ACD為80°,求跑步機(jī)手柄的一端A的高度h(精確到0.1m).
(參考數(shù)據(jù):sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,AC=8cm,CB=6cm,點(diǎn)M、N分別是AC、BC的中點(diǎn).
(1)求線段MN的長;
(2)若C為線段AB上任一點(diǎn),滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若C在線段AB的延長線上,且滿足AC﹣BC=b cm,M、N分別為AC、BC的中點(diǎn),你能猜想MN的長度嗎?并說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com