【題目】如圖,在△ABC中,AB=AC,AD平分∠BAC. 求證:△ABD≌△ACD.

【答案】證明:∵AD平分∠BAC, ∴∠BAD=∠CAD,
在△ABD和△ACD中

∴△ABD≌△ACD.
【解析】根據(jù)角平分線的定義得出∠BAD=∠CAD,根據(jù)SAS即可證出答案.
【考點(diǎn)精析】利用三角形的“三線”和等腰三角形的性質(zhì)對題目進(jìn)行判斷即可得到答案,需要熟知1、三角形角平分線的三條角平分線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形內(nèi)切圓的圓心,稱為內(nèi)心);2、三角形中線的三條中線線交于一點(diǎn)(交點(diǎn)在三角形內(nèi)部,是三角形的幾何中心,稱為中心);3、三角形的高線是頂點(diǎn)到對邊的距離;注意:三角形的中線和角平分線都在三角形內(nèi);等腰三角形的兩個底角相等(簡稱:等邊對等角).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“好玩三角形”.
(1)請用直尺和圓規(guī)在圖①中畫一個以AB為邊的“好玩三角形”;
(2)如圖②,在Rt△ABC中,∠C=90°, ,求證:△ABC是“好玩三角形”.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x2+x-1=0,則3x2+3x-5=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC≌△ADE,且∠CAD=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,E在CA延長線上,AE=AF,AD是高,試判斷EF與BC的位置關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的頂點(diǎn)C、D、F分別在邊AO、OB、AB上。

(1)如圖1,若C、D恰好是邊AO、OB的中點(diǎn),則此時矩形CDEF的面積為_________;

(2)如圖2,若=,求矩形CDEF面積的最大值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.
(1)求證:△ADC≌△CEB.
(2)AD=5cm,DE=3cm,求BE的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的是某幾何體的三種形狀圖.

(1)說出這個幾何體的名稱;
(2)若從正面看到的形狀圖長為15cm,寬為4cm的長方形,從左面看到的形狀圖是寬為3cm的長方形,從上面看到的形狀圖的最長的邊長為5cm,求這個幾何體的側(cè)面積(不包括上下底面).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是直線AB上一點(diǎn),OC為任意一條射線,OD平分∠BOC,OE平分∠AOC.

(1)指出圖中∠AOD與∠BOE的補(bǔ)角;
(2)試判斷∠COD與∠COE具有怎樣的數(shù)量關(guān)系.并說明理由.

查看答案和解析>>

同步練習(xí)冊答案