【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40元,為了擴大銷售,增加盈利,該店采取了降價措施,在每件盈利不少于25元的前提下,經(jīng)過一段時間銷售,發(fā)現(xiàn)銷售單價每降低1元,平均每天可多售出2件.

1)若降價a元,則平均每天銷售數(shù)量為 件.(用含a的代數(shù)式表示)

2)當每件商品降價多少元時,該商店每天銷售利潤為1200元.

【答案】(1);(2)當每件商品降價元時,該商店每天銷售利潤為

【解析】

1)根據(jù)銷售單價每降低1元,平均每天可多售出2件,列出代數(shù)式即可;

(2)設每件商品降價元,根據(jù)總利潤=單件利潤×銷售量列出方程即可解答.

解:(1)∵銷售單價每降低1元,平均每天可多售出2件,

∴銷售單價降低a元,平均每天可多售出2a件,

∴平均每天銷售數(shù)量為件,

故答案為:

2)設每件商品降價元,

根據(jù)題意得:,

解得:,

(符合題意)

(舍去)

答:當每件商品降價元時,該商店每天銷售利潤為元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】隨著寧波市江北區(qū)慈城古縣城旅游開發(fā)的推進,到慈城旅游的全國各地游客逐年上升.深受當?shù)乩习傩障矏鄣膬煞N本土特產(chǎn)楊梅和年糕,也深受外地游客的青睞.現(xiàn)在,有兩種特產(chǎn)大禮包的組合是這樣的:若購買2筐楊梅和3盒年糕,則需花費270元;若購買1筐楊梅和4盒年糕,則需花費260元.(楊梅、年糕分別按包裝筐和包裝盒計價)

1)求一筐楊梅、一盒年糕的售價分別是多少元?

2)如果需購買兩種特產(chǎn)共12件(1筐或1盒稱為1件),要求年糕的盒數(shù)不高于楊梅筐數(shù)的兩倍,請你設計一種購買方案,使所需總費用最低.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,ADBC,∠D90°,AD4,BC3.分別以點AC為圓心,大于AC長為半徑作弧,兩弧交于點E,射線BEAD于點F,交AC于點O.若點O恰好是AC的中點,則CD的長為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學校為了解全校1600名學生到校上學的方式,在全校隨機抽取了若干名學生進行問卷調(diào)查.問卷給出了五種上學方式供學生選擇,每人只能選一項,且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整).

(1)問:在這次調(diào)查中,一共抽取了多少名學生?

(2)補全頻數(shù)分布直方圖;

(3)估計全校所有學生中有多少人乘坐公交車上學.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD,以頂點A為圓心,AD長為半徑,AB邊上截取AE=AD,用尺規(guī)作圖法作出∠BAD的角平分線AG,AD=5,DE=6,AG的長是_________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達到了3600元.

1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;

2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達到4200元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了四次測試,測試成績?nèi)绫恚▎挝唬涵h(huán)):

第一次

第二次

第三次

第四次

9

8

8

7

10

6

7

9

1)根據(jù)表格中的數(shù)據(jù),分別計算甲、乙兩名運動員的平均成績;

2)分別計算甲、乙兩人四次測試成績的方差;根據(jù)計算的結(jié)果,你認為推薦誰參加省比賽更合適?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,每一個小正方形的邊長都是1個單位長度,在平面直角坐標系內(nèi),△ABC的三個頂點坐標分別為A1,1),B3,2),C2,4).

1)畫出△ABC關于x軸對稱的△A1B1C1,直接寫出點A1的坐標;

2)畫出△ABC繞點O逆時針旋轉(zhuǎn)90°后的△A2B2C2;

3)在(2)的條件下,求BC邊所掃過的面積.(結(jié)果保留π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在以線段AB為直徑的⊙O上取一點,連接AC、BC.ABC沿AB翻折后得到ABD.

(1)試說明點D在⊙O上;

(2)在線段AD的延長線上取一點E,使AB2=AC·AE.求證:BE為⊙O的切線;

(3)在(2)的條件下,分別延長線段AE、CB相交于點F,若BC=2,AC=4,求線段EF的長.

查看答案和解析>>

同步練習冊答案