【題目】如圖,AD是△ABC的中線,DE是△ADC的高,DF是△ABD的中線,且CE=1,DE=2,AE=4.
(1)∠ADC是直角嗎?請說明理由.
(2)求DF的長.
【答案】(1)∠ADC是直角,理由詳見解析;(2) .
【解析】
(1)利用勾股定理的逆定理,證明△ADC是直角三角形,即可得出∠ADC是直角;
(2)根據(jù)三角形的中線的定義以及直角三角形的性質(zhì)解答即可.
(1)∠ADC是直角,理由如下:
∵DE是△ADC的高,
∴∠AED=∠CED=90°,
在Rt△ADE中,∠AED=90°,
∴AD2=AE2+DE2=42+22=20,
同理:CD2=5,
∴AD2+CD2=25,
∵AC2=(1+4)2=25,
∴AD2+CD2=AC2,
∴△ADC是直角三角形,
∴∠ADC是直角;
(2)∵AD是△ABC的中線,∠ADC=90°,
∴AD垂直平分BC,
∴AB=AC=5,
在Rt△ADB中,∠ADB=90°,
∵點(diǎn)F是邊AB的中點(diǎn),
∴DF=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了參加“荊州市中小學(xué)生首屆詩詞大會”,某校八年級的兩班學(xué)生進(jìn)行了預(yù)選,其中班上前5名學(xué)生的成績(百分制)分別為:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通過數(shù)據(jù)分析,列表如下:
班級 | 平均分 | 中位數(shù) | 眾數(shù) | 方差 |
八(1) | 85 | b | c | 22.8 |
八(2) | a | 85 | 85 | 19.2 |
(1)直接寫出表中a,b,c的值;
(2)根據(jù)以上數(shù)據(jù)分析,你認(rèn)為哪個(gè)班前5名同學(xué)的成績較好?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是根據(jù)九年級某班50名同學(xué)一周的鍛煉情況繪制的條形統(tǒng)計(jì)圖,下面關(guān)于該班50名同學(xué)一周鍛煉時(shí)間的說法錯(cuò)誤的是( )
A.平均數(shù)是6
B.中位數(shù)是6.5
C.眾數(shù)是7
D.平均每周鍛煉超過6小時(shí)的人數(shù)占該班人數(shù)的一半
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形方格紙中,我們把頂點(diǎn)都在“格點(diǎn)”上的三角形稱為“格點(diǎn)三角形“,如圖,△ABC是一個(gè)格點(diǎn)三角形,點(diǎn)A的坐標(biāo)為(﹣1,2).
(1)點(diǎn)B的坐標(biāo)為 ,△ABC的面積為 ;
(2)在所給的方格紙中,請你以原點(diǎn)O為位似中心,將△ABC放大為原來的2倍,放大后點(diǎn)A、B的對應(yīng)點(diǎn)分別為A1、B1,點(diǎn)B1在第一象限;
(3)在(2)中,若P(a,b)為線段AC上的任一點(diǎn),則放大后點(diǎn)P的對應(yīng)點(diǎn)P1的坐標(biāo)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,⊙C的半徑為r,P是與圓心C不重合的點(diǎn),點(diǎn)P關(guān)于⊙C的反稱點(diǎn)的定義如下:若在射線CP上存在一點(diǎn)P′,滿足CP+CP′=2r,則稱P′為點(diǎn)P關(guān)于⊙C的反稱點(diǎn),如圖為點(diǎn)P及其關(guān)于⊙C的反稱點(diǎn)P′的示意圖.
特別地,當(dāng)點(diǎn)P′與圓心C重合時(shí),規(guī)定CP′=0.
(1)當(dāng)⊙O的半徑為1時(shí).
①分別判斷點(diǎn)M(2,1),N(,0),T(1, )關(guān)于⊙O的反稱點(diǎn)是否存在?若存在,求其坐標(biāo);
②點(diǎn)P在直線y=﹣x+2上,若點(diǎn)P關(guān)于⊙O的反稱點(diǎn)P′存在,且點(diǎn)P′不在x軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍;
(2)⊙C的圓心在x軸上,半徑為1,直線y=﹣x+2與x軸、y軸分別交于點(diǎn)A,B,若線段AB上存在點(diǎn)P,使得點(diǎn)P關(guān)于⊙C的反稱點(diǎn)P′在⊙C的內(nèi)部,求圓心C的橫坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計(jì),盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.
小明計(jì)劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時(shí),第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點(diǎn)A在拋物線y=x2+bx+c(b>0)上,且A(1,-1),
(1)若b-c=4,求b,c的值;
(2)若該拋物線與y軸交于點(diǎn)B,其對稱軸與x軸交于點(diǎn)C,則命題“對于任意的一個(gè)k(0<k<1),都存在b,使得OC=k·OB.”是否正確?若正確,請證明;若不正確,請舉反例;
(3)將該拋物線平移,平移后的拋物線仍經(jīng)過(1,-1),點(diǎn)A的對應(yīng)點(diǎn)A1為
(1-m,2b-1).當(dāng)m≥-時(shí),求平移后拋物線的頂點(diǎn)所能達(dá)到的最高點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】東門天虹商場購進(jìn)一批“童樂”牌玩具,每件成本價(jià)30元,每件玩具銷售單價(jià)x(元)與每天的銷售量y(件)的關(guān)系如下表:
若每天的銷售量y(件)是銷售單價(jià)x(元)的一次函數(shù)
(1)求y與x的函數(shù)關(guān)系式;
(2)設(shè)東門天虹商場銷售“童樂”牌兒童玩具每天獲得的利潤為w(元),當(dāng)銷售單價(jià)x為何值時(shí),每天可獲得最大利潤?此時(shí)最大利潤是多少?
(3)若東門天虹商場銷售“童樂”牌玩具每天獲得的利潤最多不超過15000元,最低不低于12000元,那么商場該如何確定“童樂”牌玩具的銷售單價(jià)的波動范圍?請你直接給出銷售單價(jià)x的范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC 有一外接圓,其中∠B=90°,AB>BC,今欲在上找一點(diǎn) P, 使得,下是甲、乙兩人的作法:
甲:①取 AB 的中點(diǎn) D:②過點(diǎn) D 作直線 AC 的平行線,交于點(diǎn) P,則點(diǎn) P 即為所求,
乙:①取 AC 的中點(diǎn) E;②過點(diǎn) E 作直線AB 的平行線,交于點(diǎn) P,則點(diǎn) P 即為所求,
對于甲、乙兩人的作法,下列判斷正確的是( )
A. 兩人皆正確 B. 兩人皆錯(cuò)誤 C. 甲正確,乙錯(cuò)誤 D. 甲錯(cuò)誤,乙正確
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com