如圖,拋物線y=a(x+1)(x-5)與x軸的交點為M、N.直線y=kx+b

與x軸交于P(-2,0),與y軸交于C.若A、B兩點在直線y=kx+b上,且AO=BO=,AO⊥BO.D為線段MN的中點,OH為Rt△OPC斜邊上的高.

1.OH的長度等于___________;k=___________,b=____________;

2.是否存在實數(shù)a,使得拋物線y=a(x+1)(x-5)上有一點E,滿足以D、N、E為頂點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E點(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB·PG<,寫出探索過程.

 

 

 

 

 

 

 

【答案】

 

1.OH=1;k=,b=

2.存在。略

3.

【解析】此題是關(guān)于函數(shù)的綜合題,有一定難度。

解:(1)OH=1;k=,b=;  (各1分)

(2)設(shè)存在實數(shù)a,是拋物線y=a(x+1)(x-5)上有一點E,滿足以D、N、E為頂點的三角形與等腰直角△AOB相似∴以D、N、E為頂點的三角形為等腰直角三角形,且這樣的三角形最多只有兩類,一類是以DN為直角邊的等腰直角三角形,另一類是以DN為斜邊的等腰直角三角形.

①若DN為等腰直角三角形的直角邊,則ED⊥DN.

由拋物線y=a(x+1)(x-5)得:M(-1,0),N(5,0)

∴D(2,0),∴ED=DN=3,∴E的坐標(biāo)是(2,3).

把E(2,3)代入拋物線解析式,得a=[來源:Z§xx§k.Com]

∴拋物線解析式為y=(x+1)(x-5)

即y=x2x+               (2分)

②若DN為等腰直角三角形的斜邊,則DE⊥EN,DE=EN.

∴E的坐標(biāo)為(3.5,1.5)

把E(3.5,1.5)代入拋物線解析式,得a=

∴拋物線解析式為y=(x+1)(x-5),即y=x2x+      (2分)

當(dāng)a=時,在拋物線y=x2x+上存在一點E(2,3)滿足條件,如果此拋物線上還有滿足條件的E點,不妨設(shè)為E’點,那么只有可能△DE’N是以DN為斜邊的等腰直角三角形,由此得E’(3.5,1.5).顯然E’不在拋物線y=x2x+上,因此拋物線y=x2x+上沒有符合條件的其他的E點.          (1分)

當(dāng)a=時,同理可得拋物線y=x2x+上沒有符合條件的其他的E點.

(1分)

當(dāng)E的坐標(biāo)為(2,3),對應(yīng)的拋物線解析式為y=x2x+時.

∵△EDN和△ABO都是等腰直角三角形,∴∠GNP=∠PBO=45°.

又∵∠NPG=∠BPO,∴△NPG∽△BPO.

,∴PB·PG=PO·PN=2×7=14,∴總滿足PB·PG<.    (2分)

當(dāng)E的坐標(biāo)為(3.5,1.5),對應(yīng)的拋物線解析式為y=x2x+時,

同理可證得:PB·PG=PO·PN=2×7=14,∴總滿足PB·PG<

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=ax2+bx+c經(jīng)過原點O,與x軸交于另一點N,直線y=kx+4與兩坐標(biāo)軸分別交于A、D兩點,與拋物線交于點B(1,m)、C(2,2).

【小題1】求直線與拋物線的解析式.
【小題2】若拋物線在x軸上方的部分有一動點P(x,y),設(shè)∠PON=,求當(dāng)△PON的面積最大時tan的值.
【小題3】若動點P保持(2)中的運動線路,問是否存在點P,使得△POA的面積等于△PON的面積的?若存在,請求出點P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年初中畢業(yè)升學(xué)考試(山東濟寧卷)數(shù)學(xué)(帶解析) 題型:解答題

如圖,拋物線y=ax2+bx-4與x軸交于A(4,0)、B(-2,0)兩點,與y軸交于點C,點P是線段AB上一動點(端點除外),過點P作PD∥AC,交BC于點D,連接CP.女女
【小題1】求該拋物線的解析式;
【小題2】當(dāng)動點P運動到何處時,BP2=BD•BC;
【小題3】當(dāng)△PCD的面積最大時,求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年四川樂山市區(qū)中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸交于A(x1,0)、B(x2,0)兩點,與y軸交于C點,對稱軸與拋物線相交于點P,與直線BC相交于點M,連接PB.已知x1、x2

恰是方程的兩根,且sin∠OBC=.

1.求該拋物線的解析式;

2.拋物線上是否存在一點Q,使△QMB與△PMB的面積相等,若存在,求點Q的坐標(biāo);若不存在,說明理由

3.在第一象限、對稱軸右側(cè)的拋物線上是否存在一點R,使△RPM與△RMB的面積相等,若存在,直接寫出點R的坐標(biāo);若不存在,說明理由.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年福建省九年級下學(xué)期第一次統(tǒng)考數(shù)學(xué)卷 題型:解答題

 (14分)如圖,拋物線:y=ax2+bx+1的頂點坐標(biāo)為D(1,0),

1.(1)求拋物線的解析式;

2.(2)如圖1,將拋物線向右平移1個單位,向下平移1個單位得到拋物線,直線,

    經(jīng)過點D交y軸于點A,交拋物線于點B,拋物線的頂點為P,求△DBP的面積;

3.如圖2,連結(jié)AP,過點B作BC⊥AP于C,設(shè)點Q為拋物線上點至點之間的一動點,

 連結(jié) 并延長交于點,試問:當(dāng)點Q運動到什么位置時,△BCF的面積為。

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012屆浙江省杭州市九年級第一次中考模擬考試數(shù)學(xué)卷 題型:選擇題

(本題滿分12分)如圖,拋物線ya(x1)(x5)x軸的交點為M、N.直線ykxb

x軸交于P(2,0),與y軸交于C.若A、B兩點在直線ykxb上,且AO=BO=,AOBOD為線段MN的中點,OHRt△OPC斜邊上的高.

(1)OH的長度等于___________;k=___________,b=____________;

(2)是否存在實數(shù)a,使得拋物線ya(x1)(x5)上有一點E,滿足以D、NE為頂

點的三角形與△AOB相似?若不存在,說明理由;若存在,求所有符合條件的拋物線的解析式,同時探索所求得的拋物線上是否還有符合條件的E(簡要說明理由);并進一步探索對符合條件的每一個E點,直線NE與直線AB的交點G是否總滿足PB·PG,寫出探索過程.

 

查看答案和解析>>

同步練習(xí)冊答案