精英家教網(wǎng)如圖,二次函數(shù)y=a x2+bx+c(a≠0)的圖象與x軸交于A,B,與y軸交于點(diǎn)C,A、C的坐標(biāo)分別是(1,0)和(0,2),B在A的右側(cè),且∠OCA=∠OBC.
(1)求證:△AOC∽△COB;
(2)求這個(gè)二次函數(shù)的解析式及頂點(diǎn)坐標(biāo).
分析:(1)利用兩個(gè)角相等的三角形相似,直接進(jìn)行判定即可;
(2)利用(1)的結(jié)論求得點(diǎn)B坐標(biāo),代入三點(diǎn)坐標(biāo)即可求出函數(shù)解析式,再據(jù)函數(shù)解析式求得頂點(diǎn)坐標(biāo).
解答:精英家教網(wǎng)(1)證明:∵∠OCA=∠OBC,
∠COA=∠BOC=90°,
∴△AOC∽△COB;

(2)解:∵△AOC∽△COB,
OA
OC
=
OC
OB

1
2
=
2
OB
,
解得OB=4,
即點(diǎn)B的坐標(biāo)為(4,0),
把點(diǎn)A、B、C三點(diǎn)代入函數(shù)解析式得,
c=2
4a+2b+c=0
16a+4b+c=0
,
解得
a=
1
2
b=-
5
2
c=2
,
所以函數(shù)解析式為:y=
1
2
x2-
5
2
x+2
,
因此頂點(diǎn)坐標(biāo)為:(
5
2
,-
9
8
).
點(diǎn)評:此題考查相似三角形的判定與性質(zhì),待定系數(shù)法求函數(shù)解析式以及求頂點(diǎn)坐標(biāo)的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過點(diǎn)D(0,
7
9
3
),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對稱軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)圖象的頂點(diǎn)為坐標(biāo)原點(diǎn)O,且經(jīng)過點(diǎn)A(3,3),一次函數(shù)的圖象經(jīng)過點(diǎn)A和點(diǎn)B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點(diǎn)C,點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠CDO=∠OED,求點(diǎn)D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,-3),∠ABC=45°,∠ACB=60°,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來累積利潤s(萬元)與時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問題:
(1)求累積利潤s(萬元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤可達(dá)30萬元;
(3)從第幾個(gè)月起公司開始盈利?該月公司所獲利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個(gè)點(diǎn),根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時(shí),ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時(shí),ax2+bx+c的值隨x增大而減小.

查看答案和解析>>

同步練習(xí)冊答案