如圖,在矩形ABCD中,點(diǎn)P在邊CD上,且與C、D不重合,過(guò)點(diǎn)A作AP的垂線與CB的延長(zhǎng)線相交于點(diǎn)Q,連接PQ,M為PQ中點(diǎn).
(1)求證:△ADP∽△ABQ;
(2)若AD=10,AB=20,點(diǎn)P在邊CD上運(yùn)動(dòng),設(shè)CP=x,BM2=y,求y與x的函數(shù)關(guān)系式,并求線段BM的最小值;
(3)若AD= a,AB=,DP=8,隨著a的大小的變化,點(diǎn)M的位置也在變化.當(dāng)點(diǎn)M落在矩形ABCD內(nèi)部時(shí),求a的取值范圍。
(1)∵∠QAP=∠BAD=90°,∴∠QAB=∠PAD。
又∵∠ABQ=∠ADP=90°,∴△ADP∽△ABQ。
(2)∵CP =x,CD=AB=20,∴DP =CD﹣DP=。
∵△ADP∽△ABQ,∴,即。
∴QB=。
在Rt△BMN中,由勾股定理得,
∴y與x的函數(shù)關(guān)系式為:(0<x<20)。
∵,
∴當(dāng)x=12即CP=8時(shí),y取得最小值為45,BM的最小值為。
(3)設(shè)PQ與AB交于點(diǎn)E。
∵M(jìn)N為中位線,∴。
∵M(jìn)N>BE,∴,解得。即。
∵,∴。
∴當(dāng)點(diǎn)M落在矩形ABCD愉部時(shí),a的取值范圍為:。
【考點(diǎn)】單動(dòng)點(diǎn)問(wèn)題,相似三角形的判定和性質(zhì),三角形中位線定理,勾股定理,矩形的性質(zhì),由實(shí)際問(wèn)題列函數(shù)關(guān)系式,二次函數(shù)的性質(zhì),解不等式。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知A,B,C為⊙O上相鄰的三個(gè)六等分點(diǎn),點(diǎn)E在劣弧AC上(不與A,B,C重合),EF
為⊙O的直徑,將⊙O沿EF折疊,使點(diǎn)A與A′重合,點(diǎn)B與B′重合,連接EB′,EC,EA′。設(shè)EB′=b,EC=c,EA′=p。試探究b,c,p三者的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
根據(jù)要求,解答下列問(wèn)題:
(1)已知直線l1的函數(shù)表達(dá)式為,直接寫(xiě)出:①過(guò)原點(diǎn)且與l1垂直的直線l2的函數(shù)表達(dá)式;②過(guò)點(diǎn)(1,0)且與l1垂直的直線l2的函數(shù)表達(dá)式;
(2)如圖,過(guò)點(diǎn)(1,0)的直線l4向上的方向與x軸的正方向所成的角為600,①求直線l4的函數(shù)表達(dá)式;②把直線l4繞點(diǎn)(1,0)按逆時(shí)針?lè)较蛐D(zhuǎn)900得到的直線l5,求直線l5的函數(shù)表達(dá)式;
(3)分別觀察(1)(2)中的兩個(gè)函數(shù)表達(dá)式,請(qǐng)猜想:當(dāng)兩直線垂直時(shí),它們的函數(shù)表達(dá)式中自變量的系數(shù)之間有何關(guān)系?請(qǐng)根據(jù)猜想結(jié)論直接寫(xiě)出過(guò)點(diǎn)(1,1)且與直線垂直的直線l6的函數(shù)表達(dá)式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在正方形ABCD中,AB=4cm,動(dòng)點(diǎn)M從A出發(fā),以1cm/s的速度沿折線AB﹣BC運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從A出發(fā),以2cm/s的速度沿折線AD﹣DC﹣CB運(yùn)動(dòng),M,N第一次相遇時(shí)同時(shí)停止運(yùn)動(dòng).設(shè)△AMN的面積為y,運(yùn)動(dòng)時(shí)間為x,則下列圖象中能大致反映y與x的函數(shù)關(guān)系的是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
為了考察冰川融化的狀況,一支科考隊(duì)在某冰川上設(shè)定一個(gè)以大本營(yíng)O為圓心,半徑為4km 圓形考察區(qū)域,線段P1、P2是冰川的部分邊界線(不考慮其它邊界),當(dāng)冰川融化時(shí),邊界線沿著與其垂直的方向朝考察區(qū)域平行移動(dòng).若經(jīng)過(guò)n年,冰川的邊界線P1P2移動(dòng)的距離為s(km),并且s與n(n為正整數(shù))的關(guān)系是.以O(shè)為原點(diǎn),建立如圖所示的平面直角坐標(biāo)系,其中P1、P2的坐標(biāo)分別是(-4,9)、(-13,-3).
(1)求線段P1P2所在的直線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)求冰川的邊界線移動(dòng)到考察區(qū)域所需要的最短時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,平面之間坐標(biāo)系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角邊BC在x軸正半軸上滑動(dòng),點(diǎn)C的坐標(biāo)為(t,0),直角邊AC=,經(jīng)過(guò)O,C兩點(diǎn)做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點(diǎn)E,直線OA:y2=kx(k為常數(shù),k>0)
(1)填空:用含t的代數(shù)式表示點(diǎn)A的坐標(biāo)及k的值:A ,k= ;
(2)隨著三角板的滑動(dòng),當(dāng)a=1時(shí):
①請(qǐng)你驗(yàn)證:拋物線的頂點(diǎn)在函數(shù)的圖象上;
②當(dāng)三角板滑至點(diǎn)E為AB的中點(diǎn)時(shí),求t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,正方形ABCD的邊長(zhǎng)是4,點(diǎn)P是邊CD上一點(diǎn),連接PA,將線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,在邊AD延長(zhǎng)線上取點(diǎn)F,使DF=DP,連接EF,CF路。
(1)求證:四邊形PCFE是平行四邊形;
(2)當(dāng)點(diǎn)P在邊CD上運(yùn)動(dòng)時(shí),四邊形PCFE的面積是否有最大值?若有,請(qǐng)求出面積的最大值及此時(shí)CP長(zhǎng);若沒(méi)有,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形紙片DOE的頂點(diǎn)O與邊AB的中點(diǎn)重合,OD交BC于點(diǎn)F,OE經(jīng)過(guò)點(diǎn)C,且∠DOE=∠B.
(1)證明△COF是等腰三角形,并求出CF的長(zhǎng);
(2)將扇形紙片DOE繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),OD,OE與邊AC分別交于點(diǎn)M,N(如圖2),當(dāng)CM的長(zhǎng)是多少時(shí),△OMN與△BCO相似?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com