【題目】已知實數(shù)x、y滿足2x+3y=1.

(1)用含有x的代數(shù)式表示y;

(2)若實數(shù)y滿足y1,求x的取值范圍;

(3)若實數(shù)x、y滿足x﹣1,y,且2x﹣3y=k,求k的取值范圍.

【答案】(1)y=;(2)x﹣1;(3)﹣5k4.

【解析】【試題分析】

(1)解關(guān)于y的一元一次方程即可;

(2)根據(jù)y>1,(1)中的式子列成不等式即可;

(3)先解關(guān)于x、y的方程組,再根據(jù)x>﹣1,y≥﹣,列不等式組即可.

【試題解析】

(1)2x+3y=1,

3y=1﹣2x,

y=;

(2)y=>1,

解得:x<﹣1,

即若實數(shù)y滿足y>1,x的取值范圍是x<﹣1;

(3)聯(lián)立2x+3y=12x﹣3y=k得:,

解方程組得:,

由題意得:,

解得:﹣5<k≤4.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】下列圖形都是由同樣大小的小圓圈按一定規(guī)律所組成的,其中第①個圖形中一共有6個小圓圈,第②個圖形中一共有9個小圓圈,第③個圖形中一共有12個小圓圈,…,按此規(guī)律排列,則第⑩個圖形中小圓圈的個數(shù)為( )

A. 24 B. 27 C. 30 D. 33

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知一張長方形紙片,,).將這張紙片沿著過點的折痕翻折,使點落在邊上的點,折痕交 于點,將折疊后的紙片再次沿著另一條過點的折痕翻折,點恰好與點重合,此時折痕交于點

1)在圖中確定點、點和點的位置;

2)聯(lián)結(jié), 等于多少°

3)用含有、的代數(shù)式表示線段的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先化簡,再求值.

(1)(2x2y4xy2)(xy2x2y),其中x=-1y2;

(2)2x2[3(x2xy)2y2]2(x2xy2y2),其中x,y滿足|x|(y1)20.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,點D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.

(1)求證:DEF是等腰三角形;

(2)當∠A=40°時,求∠DEF的度數(shù);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為解決中小學大班額問題,東營市各縣區(qū)今年將改擴建部分中小學,某縣計劃對A、B兩類學校進行改擴建,根據(jù)預算,改擴建2所A類學校和3所B類學校共需資金7800萬元,改擴建3所A類學校和1所B類學校共需資金5400萬元.

(1)改擴建1所A類學校和1所B類學校所需資金分別是多少萬元?

(2)該縣計劃改擴建A、B兩類學校共10所,改擴建資金由國家財政和地方財政共同承擔.若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有黑球兩個,白球三個,這些小球除顏色外無其他區(qū)別,從袋子中隨機摸出一個小球后,放回并搖勻,再隨機摸出一個小球,則兩次摸出的小球都是黑球的概率為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某街道改建工程指揮部,要對某路段工程進行招標,接到了甲、乙兩個工程隊的投標書. 從投標書中得知:甲隊單獨完成這項工程所需天數(shù)是乙隊單獨完成這項工程所需天數(shù)的;若由甲隊先做10天,剩下的工程再由甲、乙兩隊合作30天可以完成.

(1)求甲、乙兩隊單獨完成這項工程各需多少天?

(2)已知甲隊每天的施工費用為0.84萬元,乙隊每天的施工費用為0.56萬元,工程預算的施工費用為50萬元. 為縮短工期以減少對住戶的影響,擬安排甲、乙兩隊合作完成這項工程,則工程預算的施工費用是否夠用?若不夠用,需追加預算多少萬元?請給出你的判斷并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC,AB的垂直平分線交AB于點D,交直線AC于點E,∠AEB=80°,那么∠EBC等于( 。

A. 15° B. 25° C. 15°或75° D. 25°或85°

查看答案和解析>>

同步練習冊答案