【題目】綜合與實踐:

問題情境:在一次綜合實踐活動課上,同學們以菱形為對象,研究菱形旋轉(zhuǎn)中的問題:

已知,在菱形ABCD中,BD為對角線,,AB=4,將菱形ABCD繞頂點A順時針旋轉(zhuǎn),旋轉(zhuǎn)角為(單位°).旋轉(zhuǎn)后的菱形為.在旋轉(zhuǎn)探究活動中提出下列問題,請你幫他們解決.

觀察證明:

1)如圖1,若旋轉(zhuǎn)角,BD相交于點M,AB相交于點N.請說明線段DM的數(shù)量關系;

操作計算:

2)如圖2,連接,菱形ABCD旋轉(zhuǎn)的過程中,當AB互相垂直時,的長為 ;

3)如圖3,若旋轉(zhuǎn)角,分別連接,,過點A分別作,,連接EF,菱形ABCD旋轉(zhuǎn)的過程中,發(fā)現(xiàn)在中存在長度不變的線段EF,請求出EF長度;

操作探究:

4)如圖4,在(3)的條件下,請判斷以,,三條線段長度為邊的三角形是什么特殊三角形,并說明理由.

【答案】(1),理由見解析;(2);(3)2;(4)以,三條線段為邊的三角形是直角三角形,理由見解析

【解析】

1)根據(jù)旋轉(zhuǎn)的性質(zhì)利用ASA易證得,從而證得;

2)證得點在菱形的對角線AC上,即可求解;

3)利用等腰三角形三線合一的性質(zhì)證明EF的中位線,即可求解;

4)以為邊向外作等邊三角形,利用證得,求得,即可求解.

1

理由如下:

∵四邊形ABCD是菱形,

AB= AD

∴∠ADB=ABD,

由旋轉(zhuǎn)的性質(zhì)可得:,

,

中,

(ASA) ,

;

2)連接菱形ABCD的對角線AC、BD相交于O,

∵四邊形ABCD是菱形,且,AB=4,

,

,則,

根據(jù)旋轉(zhuǎn)的性質(zhì),且AB互相垂直,

∴點在菱形ABCD的對角線AC上,

;

3)如圖,連接BD,

根據(jù)旋轉(zhuǎn)的性質(zhì)可知:

AED,

(等腰三角形三線合一),同理BF=F,

EF的中位線,

,

∵四邊形ABCD是菱形,

AB=AD,

又∵,是等邊三角形,

;

(4)以,三條線段為邊的三角形是直角三角形,

理由如下:

如圖,以為邊向外作等邊三角形,連接DBCM,

∵四邊形ABCD是菱形,,

是等邊三角形,,

由(3)可知:都是等腰三角形,

,

都是等邊三角形,

,,

,

中,

,

,

,

,

是直角三角形,

即以,,三條線段長度為邊的三角形是直角三角形.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,將拋物線平移到頂點恰好落在直線上,并設此時拋物線頂點的橫坐標為.

1)求拋物線的解析式(用含、的代數(shù)式表示);

2)如圖②,與拋物線交于、三點,,軸,,.

①求的面積(用含的代數(shù)式表示);

②若的面積為1,當時,的最大值為-3,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學活動課上,某校初三數(shù)學老師帶領學生去測河寬,如圖所示,某學生在河東岸點處觀測到河對岸水邊有一點,測得北偏西的方向上,沿河岸向北前行20米到達處,測得北偏西的方向上,請你根據(jù)以上數(shù)據(jù),幫助該同學計算出這條河的寬度.(參考數(shù)值:tan31°≈sin31°≈

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形中,,,動點分別從點,同時出發(fā),點的速度向終點勻速運動,點的速度向終點勻速運動,當有一點到達終點時,另一點也停止運動.設運動時間為

1)當時,求四邊形的面積;

2)當為何值時,

3)當為何值時,以點,為頂點的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列一組方程:①,②,③,…小明通過觀察,發(fā)現(xiàn)了其中蘊含的規(guī)律,并順利地求出了前三個方程的解第①個方程的解為;第②個方程的解為;第③個方程的解為.若n為正整數(shù),且關于x的方程的一個解是,則n的值等于____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀理解

如圖1,中,沿的平分線折疊,剪掉重疊部分;將余下部分沿的平分線折疊,剪掉重疊部分;……;將余下部分沿的平分線折疊,點與點重合,無論折疊多少次,只要最后一次恰好重合,我們就稱的好角.

情形一:如圖2,沿等腰三角形頂角的平分線折疊,點與點重合;

情形二:如圖3,沿的平分線折疊,剪掉重疊部分;將余下的部分沿的平分線折疊,此時點與點重合.

探究發(fā)現(xiàn)

1中,,經(jīng)過兩次折疊,問 的好角(填寫“是”或“不是”);

2)若經(jīng)過三次折疊發(fā)現(xiàn)的好角,請?zhí)骄?/span>(假設)之間的等量關系

根據(jù)以上內(nèi)容猜想:若經(jīng)過次折疊的好角,則(假設)之間的等量關系為 ;

應用提升:

3)小麗找到一個三角形,三個角分別為,,發(fā)現(xiàn) 是此三角形的好角;

4)如果一個三角形的最小角是,且滿足該三角形的三個角均是此三角形的好角;

則此三角形另外兩個角的度數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在同一平面內(nèi),將ABCA點逆時針旋轉(zhuǎn)到ADE的位置.若ACDE,∠ABD62°,則∠ACB的度數(shù)為( 。

A.56°B.44°C.34°D.40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小學開展寒假爭星活動,學生可以從自理星”、“讀書星”、“健康星”、“孝敬星等中選一個項目參加爭星競選,根據(jù)該校一年級某班學生的爭星報名情況,繪制成了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中信息回答下列問題:

(1)參加調(diào)查的學生共有   人.

(2)將條形統(tǒng)計圖補充完整;

(3)請計算扇形統(tǒng)計圖中讀書星對應的扇形圓心角度數(shù);

(4)根據(jù)調(diào)查結(jié)果,試估計該小學全校3600名學生中爭當健康星的學生人數(shù).

查看答案和解析>>

同步練習冊答案