【題目】樂樂家附近的商場為了吸引顧客,設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,為轉(zhuǎn)盤直徑,如圖所示,并規(guī)定:顧客消費50元(含50元)以上,就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,如果轉(zhuǎn)盤停止后,指針正好對準9折、8折、7折區(qū)域,則顧客就可以獲得相應(yīng)區(qū)域的優(yōu)惠.

1)某顧客在該商場消費40元,是否可以獲得轉(zhuǎn)動轉(zhuǎn)盤的機會?

2)某顧客在該商場正好消費66元,則他轉(zhuǎn)動一次轉(zhuǎn)盤,獲得三種打折優(yōu)惠的概率分別是多少?

【答案】1)不能;(2,,

【解析】

1)根據(jù)規(guī)定:顧客消費50元(含50元)以上,就能獲得一次轉(zhuǎn)盤的機會,由于4050,從而可以解答本題;

2)根據(jù)題意可以分別求得他轉(zhuǎn)一次轉(zhuǎn)盤,獲得三種打折優(yōu)惠的概率.

解:(1)根據(jù)規(guī)定消費50元(含50元)以上才能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,

40元小于50元,

故不能獲得轉(zhuǎn)動轉(zhuǎn)盤的機會.

2)某顧客正好消費66元,超過50元,可以獲得轉(zhuǎn)動轉(zhuǎn)盤的機會.

若獲得9折優(yōu)惠,則概率;

若獲得8折優(yōu)惠,則概率;

若獲得7折優(yōu)惠,則概率;

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為6,B是數(shù)軸上在A左側(cè)的一點,且A,B兩點間的距離為10.動點P從點A出發(fā),以每秒6個單位長度的速度沿數(shù)軸向左勻速運動,設(shè)運動時間為tt0)秒.

1)數(shù)軸上點B表示的數(shù)是   ,點P表示的數(shù)是   (用含t的代數(shù)式表示);

2)動點Q從點B出發(fā),以每秒4個單位長度的速度沿數(shù)軸向左勻速運動,若點P、Q同時出發(fā).求:

①當點P運動多少秒時,點P與點Q相遇?

②當點P運動多少秒時,點P與點Q間的距離為8個單位長度?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A、F、C、D在同一直線上,AB∥DE,AC=DF,AB=DE.
(1)求證:四邊形BCEF是平行四邊形;
(2)若∠ABC=90°,AB=8,BC=6,當AF為何值時,四邊形BCEF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】矩形ABCD中,AD=8cm,AB=6cm.動點E從點C開始沿邊CB向點B以2cm/s的速度運動,動點F從點C同時出發(fā)沿邊CD向點D以1cm/s的速度運動至點D停止.如圖可得到矩形CFHE,設(shè)運動時間為x(單位:s),此時矩形ABCD去掉矩形CFHE后剩余部分的面積為y(單位:cm2),則y與x之間的函數(shù)關(guān)系用圖象表示大致是下圖中的( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】樂樂和科學小組的同學們在網(wǎng)上獲取了聲音在空氣中傳播的速度與空氣溫度之間關(guān)系的一些數(shù)據(jù)(如下表)

溫度/

-20

-10

0

10

20

30

聲速/(

318

324

330

336

342

348

下列說法中錯誤的是( )

A.在這個變化過程中,當溫度為10時,聲速是336

B.溫度越高,聲速越快

C.當空氣溫度為20時,聲音5可以傳播1740

D.當溫度每升高10,聲速增加6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C的坐標分別為(100),(0,4),點DOA的中點,點PBC上運動,當ODP是腰長為5的等腰三角形時,點P的坐標為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把矩形紙片ABCD紙沿對角線折疊,設(shè)重疊部分為△EBD,那么下列說法錯誤的是( )

A.△EBD是等腰三角形,EB=ED
B.折疊后∠ABE和∠CBD一定相等
C.折疊后得到的圖形是軸對稱圖形
D.△EBA和△EDC一定是全等三角形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】眉山市三蘇雕像廣場是為了紀念三蘇父子而修建的.原是一塊長為(4a+2b)米,寬為(3a-b)米的長方形地塊,現(xiàn)在政府對廣場進行改造,計劃將如圖四周陰影部分進行綠化,中間將保留邊長為(a+b)米的正方形三蘇父子雕像,則綠化的面積是多少平方米?并求出當a=20,b=10時的綠化面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,連接BD,點O是BD的中點,若M、N是邊AD上的兩點,連接MO、NO,并分別延長交邊BC于兩點M′、N′,則圖中的全等三角形共有( )

A.2對
B.3對
C.4對
D.5對

查看答案和解析>>

同步練習冊答案