【題目】某景區(qū)售票處規(guī)定:非節(jié)假日的票價打a折售票;節(jié)假日根據(jù)團隊人數(shù)x()實行分段售票:若10,則按原展價購買;若x>10,則其中10人按原票價購買,超過部分的按原那價打b折購買.某旅行社帶團到該景區(qū)游覽,設(shè)在非節(jié)假日的購票款為y1元,在節(jié)假日的購票款為y2元,y1y2x之間的函數(shù)圖象如圖所示.

(1)觀察圖象可知:a=________,b=________;

(2)x>10時,求y2x之間的函數(shù)表達式;

(3)該旅行社在今年51目帶甲團與510(非節(jié)假日)帶乙國到該景區(qū)游覽,兩團合計50人,共付門票款3120元,已知甲團人數(shù)超過10人,求甲團人數(shù)與乙團人數(shù)

【答案】(1) 6,8;(2) y2=64x+160 (x﹥10) ;(3) 甲團有35人,乙團有15人.

【解析】分析:(1)由函數(shù)圖象,用購票款數(shù)除以定價的款數(shù),得出a的值;用第11人到20人的購票款數(shù)除以定價的款數(shù),得出b的值;

(2)利用待定系數(shù)法求正比例函數(shù)解析式求出y2x的函數(shù)關(guān)系式即可;

(3)設(shè)A團有n人,表示出B團的人數(shù)為(50-n),然后根據(jù)(2)的函數(shù)關(guān)系式列出方程求解即可.

詳解:(1)由y1圖象上點(10,480),得到10人的費用為480元,

a=×10=6;

y2圖象上點(10800)和(20,1440),得到20人中后10人費用為640元,

b=×10=8

故答案為6,8

(2)當x﹥10時,設(shè)y2=kx+b.

圖象過點(10,800),(20,1440),

解得

y2=64x+160 (x﹥10) .

(3)設(shè)甲團有m人,乙團有n.

由圖象,得y1=48x.

m﹥10時,

依題意,得

解得

答:甲團有35人,乙團有15.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一拱橋的截面呈拋物線形狀,拋物線兩端點與水面的距離都是1m,拱橋的跨度為10m,拱橋與水面的最大距離是5m,橋洞兩側(cè)壁上各有一盞距離水面4m景觀燈.

1)求拋物線的解析式;

2)求兩盞景觀燈之間的水平距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)閱讀材料,解決問題.

數(shù)n是一個三位數(shù),各數(shù)位上的數(shù)字互不相同,且都不為零,從它各數(shù)位上的數(shù)字中任選兩個構(gòu)成一個兩位數(shù),這樣就可以得到六個不同的兩位數(shù),我們把這六個不同的兩位數(shù)叫做數(shù)n的“生成數(shù)”.數(shù)n的所有“生成數(shù)”之和與22的商記為G(n),例如n=123,它的六個“生成數(shù)”是12,13,21,23,31,32,這六個“生成數(shù)”的和12+13+21+23+31+32=132,132÷22=6,所以G(123)=6.

(1)計算:G(125),G(746);

(2)數(shù)s,t是兩個三位數(shù),它們都有“生成數(shù)”,a,1,4分別是s的百位、十位、個位上的數(shù)字,x,y,6分別是t的百位、十位、個位上的數(shù)字,規(guī)定:k=,若G(s)G(t)=84,求k的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一條筆直的高速公路上依次有3個標志點A、B、C,甲、乙兩車分別從A、C兩點同時出發(fā),勻速行駛,甲車從A→B→C,乙車從C→B→A,甲、乙兩車離B的距離y1、y2(千米)與行駛時間x(小時)之間的函數(shù)關(guān)系圖象如圖所示.觀察圖象,給出下列結(jié)論:①A、C之間的路程為690千米;②乙車比甲車每小時快30千米;③4.5小時兩車相遇;④點E的橫坐標表示兩車第二次相遇的時間;⑤點E的坐標為(7,180)其中正確的有________(把所有正確結(jié)論的序號都填在橫線上).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一次夏令營活動中,小明從營地A出發(fā),沿北偏東60°方向走了m 到達點B,然后再沿北偏西30°方向走了50m到達目的地C。

1)求A、C兩點之間的距離;

2)確定目的地C在營地A的北偏東多少度方向。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校學(xué)生下學(xué)期參加社區(qū)活動的情況,學(xué)校隨機調(diào)查了本校50名學(xué)生參加社區(qū)活動的次數(shù),并將調(diào)查所得的數(shù)據(jù)整理如下:

活動次數(shù)x

頻數(shù)

頻率

0<x3

10

0.20

3<x6

a

0.24

6<x9

16

0.32

9<x12

m

b

12<x15

4

0.08

15<x18

2

n

根據(jù)以上圖表信息,解答下列問題:

1)表中a=___b=___;

2)請把頻數(shù)分布直方圖補充完整(畫圖后請標注相應(yīng)的數(shù)據(jù));

3)若該校共有1500名學(xué)生,請估計該校在下學(xué)期參加社區(qū)活動超過6次的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,EOC上動點(與點O不重合),作AFBE,垂足為G,交BCF,交B0H,連接OG,CC.

(1)求證:AH=BE;

(2)試探究:∠AGO的度數(shù)是否為定值?請說明理由;

(3)OGCG,BG=,求OGC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點E、F、G、H分別是AB、BC、CD、DA邊的中點,連接EG,HF交于點O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點C作CDAB于點D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為擴大內(nèi)需,國務(wù)院決定在全國實施家電下鄉(xiāng)政策. 第一批列入家電下鄉(xiāng)的產(chǎn)品為彩電、冰箱、洗衣機和手機四種產(chǎn)品. 某縣一家家電商場,去年第一季度對以上四種產(chǎn)品的銷售情況進行了統(tǒng)計,繪制了如下的統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

1)該商場第一季度一共銷售了_________臺家電;

2)請補全條形統(tǒng)計圖,并求出扇形統(tǒng)計圖中彩電所在的扇形圓心角的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案