如圖,四個半徑為1的小圓都過大圓圓心且與大圓相內(nèi)切,陰影部分的面積為【   】

A.          B.-4
B
分析:陰影部分的面積=大圓的面積-4個小圓的面積+小圓重合部分的面積.
解答:解:∵小圓的半徑為1,
∴大圓的半徑為2,
4個小圓重合部分的面積=4×[(-)×2]=2π-4.
∴陰影部分的面積=4π-π×4+2π-4=2π-4.
故選B.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知扇形的圓心角為,半徑為6,則扇形的弧長為        .(結(jié)果保留

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(2011•廣州)如圖1,⊙O中AB是直徑,C是⊙O上一點,∠ABC=45°,等腰直角三角形DCE中∠DCE是直角,點D在線段AC上.
(1)證明:B、C、E三點共線;
(2)若M是線段BE的中點,N是線段AD的中點,證明:MN=OM;
(3)將△DCE繞點C逆時針旋轉(zhuǎn)α(0°<α<90°)后,記為△D1CE1(圖2),若M1是線段BE1的中點,N1是線段AD1的中點,M1N1=OM1是否成立?若是,請證明;若不是,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分)如圖,AB是半圓的直徑,點O是圓心,點C是OA的中點,CD⊥OA交
半圓于點D,點E是的中點,連接AE、OD,過點D作DP∥AE交BA的延長線于點P.
(1)求∠AOD的度數(shù);
(2)求證:PD是半圓O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖, AB 為⊙ O 的直徑, CD 為弦, AB ⊥ CD ,如果∠BOC = 70 ,那么∠A的度數(shù)為
A 70 C . 30 B . 35 D . 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

.如圖13,D為O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.
(1)求證:CD是O的切線;
(2)過點B作O的切線交CD的延長線于點E,若BC=6,tan∠CDA=,求BE的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某商標(biāo)是由邊長均為2的正三角形、正方形、正六邊形的金屬薄片鑲嵌而成的鑲嵌圖案.
(1)求這個鑲嵌圖案中一個正三角形的面積;
(2)如果在這個鑲嵌圖案中隨機(jī)確定一個點O,那么點O落在鑲嵌圖案中的正方形區(qū)域的概率為多少?(結(jié)果保留二位小數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,⊙Px軸分別交于A、B兩點,點P的坐標(biāo)為(3,-1),
AB=
(1)求⊙P的半徑.(4分)
(2)將⊙P向下平移,求⊙Px軸相切時平移的距離.(2分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(11·西寧)(本小題滿分10分)已知:如圖,BD為⊙O的直徑,ABAC,ADBCEAE=2,ED=4.
(1)求證:△ABE∽△ADB;
(2)求AB的長;
(3)延長DBF,使BFOB,連接FA,試判斷直線FA與⊙O的位置關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案