【題目】如圖,AB是⊙O的直徑,C為⊙O上一點,PC切⊙O于C,AE⊥PC交PC的延長線于E,AE交⊙O于D,PC與AB的延長線相交于點P,連接AC、BC.
(1)求證:AC平分∠BAD;
(2)若PB:PC=1:2,PB=4,求AB的長.
【答案】
(1)
解:(1)如圖所示:連結OC.
∵PC是⊙O的切線,
∴OC⊥EP.
又∵AE⊥PC,
∴AE∥OC.
∴∠EAC=∠ACO.
又∵∠ACO=∠AOC,
∴∠EAC=∠OAC.
∴AC平分∠BAD;
(2)
解:(2)∵AB是⊙O的直徑,
∴∠ACB=90°,
∴∠BAC+∠ABC=90°.
∵OB=OC,
∴∠OCB=∠ABC.
∵∠PCB+∠OCB=90°,
∴∠PCB=∠PAC.
∵∠P=∠P,
∴△PCA∽△PBC,
∴ = ,
∴PA= =16.
∴AB=PA﹣PB=16﹣4=12.
【解析】(1)先AE∥OC,然后依據(jù)平行線的性質可得到∠EAC=∠ACO.,接下來由∠ACO=∠AOC,可證明∠EAC=∠OAC;(2)先證明∠PCB=∠PAC,從而可證明△PCA∽△PBC,依據(jù)相似三角形的性質可求得PA的長,最后依據(jù)AB=PA﹣PB求解即可.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,從①∠1=∠2;②∠C=∠D;③∠A=∠F三個條件中選出兩個作為已知條件,另一個作為結論所組成的命題中,正確命題的個數(shù)為( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠AOB=90°,OA=45cm,OB=15cm,一機器人在點B處看見一個小球從點A出發(fā)沿著AO方向勻速滾向點O,機器人立即從點B出發(fā),沿直線勻速前進攔截小球,恰好在點C處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,平移三角形ABD,使點D沿BD的延長線平移至點C,得到三角形△A'B'D',A'B'交AC于點E,AD平分∠BAC.
(1)猜想∠B'EC與∠A'之間的關系,并寫出理由;
(2)如果將三角形ABD平移至如圖2所示位置,得到△A'B'D',請問:A'D'平分∠B'A'C嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分別是BG,AC的中點.
(1)求證:DE=DF,DE⊥DF;
(2)連接EF,若AC=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC在平面直角坐標系中,點A、B、C的坐標分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)作△ABC關于y對稱的△A1B1C1,其中,點A、B、C的對應點分別為A1、B1、C1(不要求寫作法);
(2)寫出點A1、B1、C1的坐標;
(3)計算△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式,能夠表示圖中陰影部分的面積的是( 。
①ac+(b﹣c)c;②ac+bc﹣c2;③ab﹣(a﹣c)(b﹣c);④(a﹣c)c+(b﹣c)c+c2
A. ①②③④ B. ①②③ C. ①② D. ①
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com