設p,q均為自然數(shù),且
p
q
=1-
1
2
+
1
3
-
1
4
+
1
5
-…-
1
18
+
1
19
,求證:29|p.
證明:注意到29是質(zhì)數(shù).令a=10×11××19.
p
q
=1-
1
2
+
1
3
-
1
4
+
1
5
-…-
1
18
+
1
19
,
=(1+
1
2
+
1
3
+
1
4
+…+
1
19
)-2(
1
2
+
1
4
+…+
1
18
),
=(
1
2
+
1
3
+…+
1
19
)-(1+
1
2
+…+
1
9
),
=
1
10
+
1
11
+…+
1
19
,
=(
1
10
+
1
19
)+(
1
11
+
1
18
)+…+(
1
14
+
1
15
),
=29(
1
19×10
+
1
11×18
+…+
1
14×15
),
∴ap=29q•b,
其中b=a(
1
10×19
+
1
11×18
+…+
1
14×15
)是整數(shù),
∵29|a•p,29是質(zhì)數(shù),29|a.
∴29|p.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

設p,q均為自然數(shù),且
7
10
p
q
11
15
,當q最小時求pq的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設p,q均為自然數(shù),且
p
q
=1-
1
2
+
1
3
-
1
4
+
1
5
-…-
1
18
+
1
19
,求證:29|p.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

設a,b均為自然數(shù),且3a>b,若a除以5余1,b除以5余4,則(3a-b)除以5的余數(shù)是
4
4

查看答案和解析>>

科目:初中數(shù)學 來源:2012年上海市蘭生復旦中學理科班教程:分解質(zhì)因數(shù)(解析版) 題型:解答題

設p,q均為自然數(shù),且,求證:29|p.

查看答案和解析>>

同步練習冊答案