【題目】問題情境:
在綜合與實(shí)踐課上,老師讓同學(xué)們以“矩形紙片的剪拼”為主題開展數(shù)學(xué)活動(dòng).如圖1,將矩形紙片沿對(duì)角線剪開,得到和.并且量得,.
操作發(fā)現(xiàn):
(1)將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使,得到如圖2所示的,過點(diǎn)作的平行線,與的延長(zhǎng)線交于點(diǎn),則四邊形的形狀是________.
(2)創(chuàng)新小組將圖1中的以點(diǎn)為旋轉(zhuǎn)中心,按逆時(shí)針方向旋轉(zhuǎn),使、、三點(diǎn)在同一條直線上,得到如圖3所示的,連接,取的中點(diǎn),連接并延長(zhǎng)至點(diǎn),使,連接、,得到四邊形,發(fā)現(xiàn)它是正方形,請(qǐng)你證明這個(gè)結(jié)論.
實(shí)踐探究:
(3)縝密小組在創(chuàng)新小組發(fā)現(xiàn)結(jié)論的基礎(chǔ)上,進(jìn)行如下操作:將沿著方向平移,使點(diǎn)與點(diǎn)重合,此時(shí)點(diǎn)平移至點(diǎn),與相交于點(diǎn),如圖4所示,連接,試求的值.
【答案】(1)菱形;(2)證明見解析;(3)
【解析】(1)根據(jù)菱形的判定方法進(jìn)行判定即可.
根據(jù)正方形的判定方法進(jìn)行判定即可.
在Rt△ABC中,根據(jù)sin∠ACB=,求出∠ACB=30°,在Rt△BCH中,求出在Rt△ABH中,求出的長(zhǎng)度,根據(jù)銳角三角函數(shù)的定義求解即可.
(1)在如圖1中,
∵AC是矩形ABCD的對(duì)角線,
∴∠B=∠D=90°,AB∥CD,
∴∠ACD=∠BAC,
在如圖2中,由旋轉(zhuǎn)知,AC'=AC,∠AC'D=∠ACD,
∴∠BAC=∠AC'D,
∵∠CAC'=∠BAC,
∴∠CAC'=∠AC'D,
∴AC∥C'E,
∵AC'∥CE,
∴四邊形ACEC'是平行四邊形,
∵AC=AC',
∴ACEC'是菱形,
故答案為:菱形;
(2)在圖1中,∵四邊形ABCD是矩形,
∴AB∥CD,
∴∠CAD=∠ACB,∠B=90°,
∴∠BAC+∠ACB=90°,
在圖3中,由旋轉(zhuǎn)知,∠DAC'=∠DAC,
∴∠ACB=∠DAC',
∴∠BAC+∠DAC'=90°,
∵點(diǎn)D,A,B在同一條直線上,
∴∠CAC'=90°,
由旋轉(zhuǎn)知,AC=AC',
∵點(diǎn)F是CC'的中點(diǎn),
∴AG⊥CC',CF=C'F,
∵AF=FG,
∴四邊形ACGC'是平行四邊形,
∵AG⊥CC',
∴ACGC'是菱形,
∵∠CAC'=90°,
∴菱形ACGC'是正方形;
(3)在Rt△ABC中,AB=2,AC=4,
∴BC'=AC=4,BD=BC=2,sin∠ACB=,
∴∠ACB=30°,
由(2)結(jié)合平移知,∠CHC'=90°,
在Rt△BCH中,∠ACB=30°,
∴BH=BCsin30°=,
∴
在Rt△ABH中,AH=AB=1,
∴CH=AC-AH=4-1=3,
在Rt△CHC'中,tan∠C′CH= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某某用戶培育了甲乙兩種番茄,各隨機(jī)抽取了10棵幼苗,測(cè)試高度如下(單位:cm)
甲:10,9,10,10,13,8,7,12,10,11
乙:9,10,8,11,10,11,10,9,10,12
你認(rèn)為哪種番茄長(zhǎng)得比較整齊?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的一種產(chǎn)品按照質(zhì)量由高到低分為A,B,C,D四級(jí),為了增加產(chǎn)量、提高質(zhì)量,該公司改進(jìn)了一次生產(chǎn)工藝,使得生產(chǎn)總量增加了一倍.為了解新生產(chǎn)工藝的效果,對(duì)改進(jìn)生產(chǎn)工藝前、后的四級(jí)產(chǎn)品的占比情況進(jìn)行了統(tǒng)計(jì),繪制了如下扇形圖:
根據(jù)以上信息,下列推斷合理的是( )
A.改進(jìn)生產(chǎn)工藝后,A級(jí)產(chǎn)品的數(shù)量沒有變化
B.改進(jìn)生產(chǎn)工藝后,B級(jí)產(chǎn)品的數(shù)量增加了不到一倍
C.改進(jìn)生產(chǎn)工藝后,C級(jí)產(chǎn)品的數(shù)量減少
D.改進(jìn)生產(chǎn)工藝后,D級(jí)產(chǎn)品的數(shù)量減少
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】曲線在直角坐標(biāo)系中的位置如圖所示,曲線是由半徑為2,圓心角為的(是坐標(biāo)原點(diǎn),點(diǎn)在軸上)繞點(diǎn)旋轉(zhuǎn),得到;再將繞點(diǎn)旋轉(zhuǎn),得到;……依次類推,形成曲線,現(xiàn)有一點(diǎn)從點(diǎn)出發(fā),以每秒個(gè)單位長(zhǎng)度的速度,沿曲線向右運(yùn)動(dòng),則點(diǎn)的坐標(biāo)為___________;在第時(shí),點(diǎn)的坐標(biāo)為____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,現(xiàn)給以下結(jié)論:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m為實(shí)數(shù));⑤4ac﹣b2<0.其中錯(cuò)誤結(jié)論的個(gè)數(shù)有( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為鼓勵(lì)學(xué)生閱讀,某校開展了網(wǎng)上閱讀室活動(dòng),校教務(wù)處為了解學(xué)生的閱讀情況,隨機(jī)抽查了部分學(xué)生最近一周參加網(wǎng)上閱讀室的天數(shù),并用得到的數(shù)據(jù)繪制了如下兩幅統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,回答下列問題:
(1)__________(百分比),本次調(diào)查的參加網(wǎng)上閱讀室的天數(shù)的中位數(shù)為________.
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)如果該校有3000名學(xué)生,請(qǐng)估算全校有多少名學(xué)生參加網(wǎng)上閱讀室的天數(shù)不少于4天.
(4)在某班被調(diào)查的學(xué)生中,參加網(wǎng)上閱讀室的天數(shù)不少于4天的有2名女同學(xué),3名男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加閱讀心得分享會(huì),請(qǐng)用列表法或畫樹狀圖法求所抽取的2名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形中,、分別是、邊上的點(diǎn),與交于點(diǎn).
(1)如圖1,若四邊形是矩形,且,求證:;
(2)如圖2,若四邊形是平行四邊形,試探究:當(dāng)與滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論;
(3)如圖3,若,,,,請(qǐng)直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小麗早晨6:00從家里出發(fā),騎車去菜場(chǎng)買菜,然后從菜場(chǎng)返回家中.小麗離家的路程(米)和所經(jīng)過的時(shí)間(分)之間的函數(shù)圖象如圖所示,請(qǐng)根據(jù)圖象回答下列問題:
(1)小麗去菜場(chǎng)途中的速度是多少?在菜場(chǎng)逗留了多長(zhǎng)時(shí)間?
(2)小麗幾點(diǎn)幾分返回到家?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于x的一元二次方程有實(shí)數(shù)根.
(1)求m的取值范圍;
(2)當(dāng)m為正整數(shù)時(shí),取一個(gè)合適的值代入求出方程的解.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com