【題目】在數(shù)學(xué)活動課上,李老師讓同學(xué)們試著用角尺平分 (如圖所示),有兩組.

同學(xué)設(shè)計了如下方案:

方案①:將角尺的直角頂點介于射線之間,移動角尺使角尺兩邊相同的刻度位于,且交點分別為,,過角尺頂點的射線就是的平分線.

方案②:在邊上分別截取,將角尺的直角頂點介于射線之間,移動角尺使角尺兩邊相同的刻度與點重合,,過角尺頂點的射線就是的平分線.請分別說明方案①與方案②是否可行?若可行,請證明; 若不可行,請說明理由.

【答案】方案①不可行,理由見解析;方案②可行,證明見解析.

【解析】

通過畫圖可分析到:方案①中判定PM=PN并不能判斷PO就是∠AOB的角平分線,關(guān)鍵是缺少△OPM≌△OPN的條件,只有邊邊的條件;
方案②中△OPM和△OPN是全等三角形(三邊相等),則∠MOP=NOP,所以OP為∠AOB的角平分線;

如圖可得,方案不可行.

因為只有,不能判斷.

不能得到,所以不能判定就是的平分線.

方案可行.

中,

.

就是的平分線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線l1y=﹣2x+6與坐標(biāo)軸交于A,B兩點,直線l2ykx+2k0)與坐標(biāo)軸交于點CD,直線l1l2與相交于點E

1)當(dāng)k2時,求兩條直線與x軸圍成的BDE的面積;

2)點Pa,b)在直線l2ykx+2k0)上,且點P在第二象限.當(dāng)四邊形OBEC的面積為時.

①求k的值;

②若ma+b,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】清明節(jié)假期,小紅和小陽隨爸媽去旅游,他們在景點看到一棵古松樹,小紅驚訝的說:呀!這棵樹真高!有60多米.小陽卻不以為然:“60多米?我看沒有.兩個人爭論不休,爸爸笑著說:別爭了,正好我?guī)Я艘桓比前,用你們學(xué)過的知識量一量、算一算,看誰說的對吧!

小紅和小陽進(jìn)行了以下測量:如圖所示,小紅和小陽分別在樹的東西兩側(cè)同一地平線上,他們用手平托三角板,保持三角板的一條直角邊與地平面平行,然后前后移動各自位置,使目光沿著三角板的斜邊正好經(jīng)過樹的最高點,這時,測得小紅和小陽之間的距離為135米,他們的眼睛到地面的距離都是1.6米.通過計算說明小紅和小陽誰的說法正確(計算結(jié)果精確到0.1)(參考數(shù)據(jù)≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正六邊形ABCDEF中,P、Q兩點分別為△ACF、△CEF的內(nèi)心.若AF=2,則PQ的長度為何?(  )

A. 1 B. 2 C. 2﹣2 D. 4﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB13,AC5,BC邊上的中線AD6,點EAD的延長線上,且EDAD

1)求證:BEAC;

2)求∠CAD的大;

3)求點ABC的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某共享單車公司提供了手機(jī)和會員卡兩種支付方式.若用手機(jī)支付方式,騎行時間在半小時以內(nèi)(含半小時)不收費,超出半小時后每半小時收費1元,若選擇會員卡支付,騎行時間每半小時收費0.8元,設(shè)騎行時間為x小時

(1)根據(jù)題意,填寫下表(單位:元):

騎行時間(小時)

0.5

2

3

手機(jī)支付付款金額(元)

0

會員卡支付付款金額(元)

3.2

(2)設(shè)用手機(jī)支付付款金額為y1元,用會員卡支付付款金額為y2元,分別寫出y1,y2關(guān)于x的函數(shù)關(guān)系式;

(3)若李老師經(jīng)常騎行該公司的共享單車,他應(yīng)選擇哪種支付方式比較合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D△ABC邊延長線上,點O是邊AC上一個動點,過O作直線EF∥BC,交∠BCA的平分線于點F,交∠BCA的外角平分線于E.當(dāng)點O在線段AC上移動(不與點A,C重合)時,下列結(jié)論不一定成立的是( 。

A. 2∠ACE=∠BAC+∠B B. EF=2OC C. ∠FCE=90° D. 四邊形AFCE是矩形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABD≌△CDB,且ABCD是對應(yīng)邊.下面四個結(jié)論中不正確的是( )

A. ABD和△CDB的面積相等B. ABD和△CDB的周長相等

C. A+ABD=C+CBDD. ADBC,且AD=BC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABC繞點C順時針旋轉(zhuǎn)90°得到EDC.若點A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( 。

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

同步練習(xí)冊答案