【題目】如圖,△ABC內(nèi)接于⊙O.AB為⊙O的直徑,BC=3,AB=5,D、E分別是邊AB、BC上的兩個(gè)動(dòng)點(diǎn)(不與端點(diǎn)A、B、C重合),將△BDE沿DE折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在線段AC上(包含端點(diǎn)A、C),若△ADB′為等腰三角形,則AD的長為___.
【答案】或或.
【解析】
根據(jù)圓周角定理得到∠C=90°,根據(jù)勾股定理得到AC=4,根據(jù)折疊的性質(zhì)得到BD=B′D,BE=B′E,①當(dāng)AB′=DB′時(shí),設(shè)AB′=DB′=BD=x,根據(jù)相似三角形的性質(zhì)得到AD=5-x=;;②當(dāng)AD=DB′時(shí),則AD=DB′=BD=AB=;③當(dāng)AD=AB′時(shí),如圖2,過D作DH⊥AC于H,根據(jù)平行線分線段成比例定理即可得到結(jié)論.
∵AB為⊙O的直徑,
∴∠C=90°,
∵BC=3,AB=5,
∴AC=4,
∵將△BDE沿DE折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在線段AC上,
∴BD=B′D,BE=B′E,
若△ADB′為等腰三角形,
①當(dāng)AB′=DB′時(shí),設(shè)AB′=DB′=BD=x,
則AD=5-x,
如圖1,過B′作B′F⊥AD于F,
則AF=DF=AD,
∵∠A=∠A,∠AFB′=∠C=90°,
∴△AFB′∽△ACB,
∴=,
∴=,
解得:x=,
∴AD=5-x=;
②當(dāng)AD=DB′時(shí),則AD=DB′=BD=AB=;
③當(dāng)AD=AB′時(shí),如圖2,過D作DH⊥AC于H,
∴DH∥BC,
∴==,
設(shè)AD=5m,
∴DH=3m,AH=4m,
∴DB′=BD=5-5m,HB′=5m-4m=m,
∵=+,
∴=+,
∴m=,m=(不合題意舍去),
∴AD=,
故答案為:或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,2)請(qǐng)解答下列問題:
(1)畫出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫出A1的坐標(biāo).
(2)畫出△ABC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)90°后得到的△A2B2C2,并寫出A2的坐標(biāo).
(3)畫出△A2B2C2關(guān)于原點(diǎn)O成中心對(duì)稱的△A3B3C3,并寫出A3的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在矩形ABCD中,AB=6,BC=10,P是AD邊上一動(dòng)點(diǎn)(不含端點(diǎn)A,D),連接PC,E是AB邊上一點(diǎn),設(shè)BE=a,若存在唯一點(diǎn)P,使∠EPC=90°,則a的值是( )
A.B.C.3D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人相約周末登花果山,甲、乙兩人距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)圖象如圖所示,根據(jù)圖象所提供的信息解答下列問題:
(1)甲登山上升的速度是每分鐘 米,乙在地時(shí)距地面的高度為 米;
(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,請(qǐng)求出乙登山全程中,距地面的高度(米)與登山時(shí)間(分)之間的函數(shù)關(guān)系式.
(3)登山多長時(shí)間時(shí),甲、乙兩人距地面的高度差為50米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】可以用如下方法求方程x2-2x-2=0的實(shí)數(shù)根的范圍:利用函數(shù)y=x2-2x-2的圖象可知,當(dāng)x=0時(shí),y<0,當(dāng)x=-1時(shí),y>0,所以方程有一個(gè)根在-1和0之間.
(1)參考上面的方法,求方程x2-2x-2=0的另一個(gè)根在哪兩個(gè)連續(xù)整數(shù)之間;
(2)若方程x2-2x+c=0有一個(gè)根在0和1之間,求c的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)一批單價(jià)為8元的商品,如果按每件10元出售,那么每天可銷售100件,經(jīng)調(diào)查發(fā)現(xiàn),這種商品的銷售單價(jià)每提高1元,其銷售量相應(yīng)減少10件.
(1)求銷售量件與銷售單價(jià)元之間的關(guān)系式;
(2)當(dāng)銷售單價(jià)定為多少,才能使每天所獲銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對(duì)角線BD折疊,點(diǎn)C落在點(diǎn)C′的位置,BC′交AD于點(diǎn)G.
(1)求證:BG=DG;
(2)求C′G的長;
(3)如圖2,再折疊一次,使點(diǎn)D與A重合,折痕EN交AD于M,求EM的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校教學(xué)樓與實(shí)驗(yàn)樓的水平間距米,在實(shí)驗(yàn)樓頂部點(diǎn)測(cè)得教學(xué)樓頂部點(diǎn)的仰角是,底部點(diǎn)的俯角是,則教學(xué)樓的高度是____米(結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先化簡,再求值:,其中|x|≤1,且x為整數(shù).
小海同學(xué)的解法如下:
解:原式=﹣ ①
=(x﹣1)2﹣x2+3 ②
=x2﹣2x﹣1﹣x2+3 ③
=﹣2x+2.④
當(dāng)x=﹣1時(shí),⑤
原式=﹣2×(﹣1)+2⑥
=2+2=4.⑦
請(qǐng)指出他解答過程中的錯(cuò)誤(寫出相應(yīng)的序號(hào),多寫不給分),并寫出正確的解答過程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com