【題目】如圖1,O為直線AB上一點,過點O作射線OC,,將一直角三角板的直角頂點放在點O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點O以每秒的速度沿逆時針方向旋轉(zhuǎn)一周如圖2,經(jīng)過t秒后,ON落在OC邊上,則______秒(直接寫結(jié)果).
(2)如圖2,三角板繼續(xù)繞點O以每秒的速度沿逆時針方向旋轉(zhuǎn)到起點OA上同時射線OC也繞O點以每秒的速度沿逆時針方向旋轉(zhuǎn)一周,
①當OC轉(zhuǎn)動9秒時,求的度數(shù).
②運動多少秒時,?請說明理由.
【答案】(1)6;(2)①45°;②11秒或25秒.
【解析】
(1)因為∠AOC=30°,所以ON落在OC邊上時,三角板旋轉(zhuǎn)了30°,旋轉(zhuǎn)時間就為6s;
(2)在整個旋轉(zhuǎn)過程中,可以看做這樣一個追及問題更容易理解,即:ON繞點O以每秒5°的速度沿逆時針方向旋轉(zhuǎn),同時射線OC也繞O點以每秒10°的速度沿逆時針方向旋轉(zhuǎn);
①9秒時,∠NOC=45°,而OC旋轉(zhuǎn)了90°,所以∠MOC的度數(shù)就是45°;
②∠MOC=35°時,應分OC與OM重合前35°與重合后35°兩種情況考慮,得到兩個時間點均滿足要求.
(1)∵∠AOC=30°
而三角板每秒旋轉(zhuǎn)5°
∴當ON落在OC邊上時,有5t=30°
得t=6
故答案為:6.
(2)①當OC轉(zhuǎn)動9秒時,∠COA=30°+10°×9=120°
而∠MOA=30°+90°+5°×9=165°
又∵∠MOC=∠MOA-∠COA
即:∠MOC=165°-120°=45°
答:當OC轉(zhuǎn)動9秒時,∠MOC的度數(shù)為45°.
②設(shè)OC運動起始位置為射線OP(如圖1),運動t秒時,∠MOC=35°,
則∠MOP=90°+5t,∠COP=10t
當∠MOC=35°時,有(90°+5t)-10t=35°或10t-(90°+5t)=35°
得t=11或t=25
因為三角板與射線OC都只旋轉(zhuǎn)一周,所以不考慮再次追及的情況.
故當運動11秒或25秒時,∠MOC=35°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,AD=4,BC=12,點E是BC的中點.點P、Q分別是邊AD、BC上的兩點,其中點P以每秒個1單位長度的速度從點A運動到點D后再返回點A,同時點Q以每秒2個單位長度的速度從點C出發(fā)向點B運動.當其中一點到達終點時停止運動.當運動時間t為_____秒時,以點A、P,Q,E為頂點的四邊形是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料,完成后面題目.
0°-360°間的角的三角函數(shù)
在初中,我們學習過銳角的正弦、余弦、正切和余切四種三角函數(shù),即在圖1所示的直角三角形ABC,∠A是銳角,那么sinA=,cosA=,tanA=,cotA=
為了研究需要,我們再從另一個角度來規(guī)定一個角的三角函數(shù)的意義:
設(shè)有一個角α,我們以它的頂點作為原點,以它的始邊作為x軸的正半軸ox,建立直角坐標系(圖2),在角α的終邊上任取一點P,它的橫坐標是x,縱坐標是y,點P和原點(0,0)的距離為r=(r總是正的),然后把角α的三角函數(shù)規(guī)定為:sinα=,cosα=,tanα=,cotα=
我們知道,圖1的四個比值的大小與角A的大小有關(guān),而與直角三角形的大小無關(guān),同樣圖2中四個比值的大小也僅與角α的大小有關(guān),而與點P在角α的終邊位置無關(guān).
比較圖1與圖2,可以看出一個角的三角函數(shù)的意義的兩種規(guī)定實際上是一樣的,根據(jù)第二種定義回答下列問題.
(1)若90°<α<180°,則角α的三角函數(shù)值sinα、cosα、tanα、cotα,其中取正值的是哪幾個?
(2)若角α的終邊與直線y=2x重合,求sinα+cosα的值.
(3)若角α是鈍角,其終邊上一點P(x,),且cosα=x,求tanα的值.
(4)若0°≤α≤90°,求sinα+cosα的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直角坐標系xOy中,一次函數(shù)y=﹣x+5的圖象l1分別與x,y軸交于A,B兩點,正比例函數(shù)的圖象l2與l1交于點C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函數(shù)y=kx+1的圖象為l3,且11,l2,l3不能圍成三角形,直接寫出k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形網(wǎng)格中,△ABC各頂點都在格點上,點A,C的坐標分別為(﹣5,1)、(﹣1,4),結(jié)合所給的平面直角坐標系解答下列問題:
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出△ABC關(guān)于原點O對稱的△A2B2C2;
(3)點C1的坐標是 ;點C2的坐標是 ;
(4)試判斷:與是否關(guān)于x軸對稱?(只需寫出判斷結(jié)果) .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,的的平分線與的外角平分線相交于點,點分別在線段、上,點在的延長線上,與關(guān)于直線對稱,若,則__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市2018年平均每天的垃圾處理量為40萬噸/天,2019年平均每天的垃圾排放量比2018年平均每天的垃圾排放量多100萬噸;2019年平均每天的垃圾處理量是2018年平均每天的垃圾處理量的2. 5倍. 若2019年平均每天的垃圾處理率是2018年平均每天的垃圾處理率的1. 25倍.
(注:)
(1)求該市2018年平均每天的垃圾排放量;
(2)預計該市2020年平均每天的垃圾排放量比2019年平均每天的垃圾排放量增加. 如果按照創(chuàng)衛(wèi)要求“城市平均每天的垃圾處理率不低于”,那么該市2020年平均每天的垃圾處理量在2019年平均每天的垃圾處理量的基礎(chǔ)上,至少還需要増加多少萬噸才能使該市2020年平均每天的垃圾處理率符合創(chuàng)衛(wèi)的要求?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,將兩個含30°角的三角尺擺放在一起,可以證得△ABD是等邊三角形,于是我們得到:在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半.
交換命題的條件和結(jié)論,得到下面的命題:
在直角△ABC中,∠ACB=90°,如果,那么∠BAC=30°.
請判斷此命題的真假,若為真命題,請給出證明;若為假命題,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】科學考察隊的一輛越野車需要穿越一片沙漠,但這輛車每次裝滿汽油最多只能行駛,隊長想出一個方法,在沙漠中設(shè)若干個儲油點(越野車穿越出沙漠,就可以另外加油).
(1)如果穿越全程大于的沙漠,在沙漠中設(shè)一個儲油點,越野車裝滿油從起點出發(fā),到儲油點時從車中取出部分油放進儲油點,然后返回出發(fā)點,加滿油后再開往,到儲油點時,取出儲存的所有油放在車上,再從出發(fā)到達終點,此時,這輛越野車穿越這片沙漠的最大行程是多少?
(2)如果穿越全程大于的沙漠,在沙漠中設(shè)2個儲油點,,越野車裝滿油從起點出發(fā),到儲油點時從車中取出部分油放進儲油點;然后返回出發(fā)點加滿油,到儲油點時取出儲油點的全部油放到車上,再到達儲油點,從車中取出部分油放進儲油點;然后返回出發(fā)點加滿油,到儲油點取出儲存的所有油放在車上,最后到達終點.此時,這輛越野車穿越這片沙漠的最大行程是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com